Step |
Hyp |
Ref |
Expression |
1 |
|
assamulgscm.v |
|
2 |
|
assamulgscm.f |
|
3 |
|
assamulgscm.b |
|
4 |
|
assamulgscm.s |
|
5 |
|
assamulgscm.g |
|
6 |
|
assamulgscm.p |
|
7 |
|
assamulgscm.h |
|
8 |
|
assamulgscm.e |
|
9 |
|
assaring |
|
10 |
7
|
ringmgp |
|
11 |
9 10
|
syl |
|
12 |
11
|
adantl |
|
13 |
12
|
adantl |
|
14 |
13
|
adantr |
|
15 |
|
simpll |
|
16 |
|
assalmod |
|
17 |
16
|
adantl |
|
18 |
|
simpll |
|
19 |
|
simplr |
|
20 |
1 2 4 3
|
lmodvscl |
|
21 |
17 18 19 20
|
syl3anc |
|
22 |
21
|
adantl |
|
23 |
22
|
adantr |
|
24 |
7 1
|
mgpbas |
|
25 |
|
eqid |
|
26 |
7 25
|
mgpplusg |
|
27 |
24 8 26
|
mulgnn0p1 |
|
28 |
14 15 23 27
|
syl3anc |
|
29 |
|
oveq1 |
|
30 |
|
simprr |
|
31 |
2
|
eqcomi |
|
32 |
31
|
fveq2i |
|
33 |
5 32
|
mgpbas |
|
34 |
2
|
assasca |
|
35 |
5
|
ringmgp |
|
36 |
34 35
|
syl |
|
37 |
36
|
adantl |
|
38 |
37
|
adantl |
|
39 |
|
simpl |
|
40 |
3
|
a1i |
|
41 |
2
|
fveq2i |
|
42 |
40 41
|
eqtrdi |
|
43 |
42
|
eleq2d |
|
44 |
43
|
biimpcd |
|
45 |
44
|
adantr |
|
46 |
45
|
imp |
|
47 |
46
|
adantl |
|
48 |
33 6 38 39 47
|
mulgnn0cld |
|
49 |
|
simprlr |
|
50 |
24 8 13 39 49
|
mulgnn0cld |
|
51 |
|
eqid |
|
52 |
|
eqid |
|
53 |
1 51 52 4 25
|
assaass |
|
54 |
30 48 50 22 53
|
syl13anc |
|
55 |
1 51 52 4 25
|
assaassr |
|
56 |
30 47 50 49 55
|
syl13anc |
|
57 |
56
|
oveq2d |
|
58 |
24 8 26
|
mulgnn0p1 |
|
59 |
13 39 49 58
|
syl3anc |
|
60 |
59
|
eqcomd |
|
61 |
60
|
oveq2d |
|
62 |
61
|
oveq2d |
|
63 |
17
|
adantl |
|
64 |
|
peano2nn0 |
|
65 |
64
|
adantr |
|
66 |
24 8 13 65 49
|
mulgnn0cld |
|
67 |
|
eqid |
|
68 |
1 51 4 52 67
|
lmodvsass |
|
69 |
68
|
eqcomd |
|
70 |
63 48 47 66 69
|
syl13anc |
|
71 |
57 62 70
|
3eqtrd |
|
72 |
|
simprll |
|
73 |
5 3
|
mgpbas |
|
74 |
|
eqid |
|
75 |
5 74
|
mgpplusg |
|
76 |
73 6 75
|
mulgnn0p1 |
|
77 |
38 39 72 76
|
syl3anc |
|
78 |
2
|
a1i |
|
79 |
78
|
fveq2d |
|
80 |
79
|
oveqd |
|
81 |
77 80
|
eqtrd |
|
82 |
81
|
eqcomd |
|
83 |
82
|
oveq1d |
|
84 |
54 71 83
|
3eqtrd |
|
85 |
29 84
|
sylan9eqr |
|
86 |
28 85
|
eqtrd |
|
87 |
86
|
exp31 |
|