Metamath Proof Explorer


Theorem assapropd

Description: If two structures have the same components (properties), one is an associative algebra iff the other one is. (Contributed by Mario Carneiro, 8-Feb-2015)

Ref Expression
Hypotheses assapropd.1 φ B = Base K
assapropd.2 φ B = Base L
assapropd.3 φ x B y B x + K y = x + L y
assapropd.4 φ x B y B x K y = x L y
assapropd.5 φ F = Scalar K
assapropd.6 φ F = Scalar L
assapropd.7 P = Base F
assapropd.8 φ x P y B x K y = x L y
Assertion assapropd φ K AssAlg L AssAlg

Proof

Step Hyp Ref Expression
1 assapropd.1 φ B = Base K
2 assapropd.2 φ B = Base L
3 assapropd.3 φ x B y B x + K y = x + L y
4 assapropd.4 φ x B y B x K y = x L y
5 assapropd.5 φ F = Scalar K
6 assapropd.6 φ F = Scalar L
7 assapropd.7 P = Base F
8 assapropd.8 φ x P y B x K y = x L y
9 assalmod K AssAlg K LMod
10 assaring K AssAlg K Ring
11 9 10 jca K AssAlg K LMod K Ring
12 11 a1i φ K AssAlg K LMod K Ring
13 assalmod L AssAlg L LMod
14 1 2 3 5 6 7 8 lmodpropd φ K LMod L LMod
15 13 14 syl5ibr φ L AssAlg K LMod
16 assaring L AssAlg L Ring
17 1 2 3 4 ringpropd φ K Ring L Ring
18 16 17 syl5ibr φ L AssAlg K Ring
19 15 18 jcad φ L AssAlg K LMod K Ring
20 5 6 eqtr3d φ Scalar K = Scalar L
21 20 eleq1d φ Scalar K CRing Scalar L CRing
22 14 17 21 3anbi123d φ K LMod K Ring Scalar K CRing L LMod L Ring Scalar L CRing
23 22 adantr φ K LMod K Ring K LMod K Ring Scalar K CRing L LMod L Ring Scalar L CRing
24 simpll φ K LMod K Ring r P z B w B φ
25 simplrl φ K LMod K Ring r P z B w B K LMod
26 simprl φ K LMod K Ring r P z B w B r P
27 5 fveq2d φ Base F = Base Scalar K
28 7 27 eqtrid φ P = Base Scalar K
29 24 28 syl φ K LMod K Ring r P z B w B P = Base Scalar K
30 26 29 eleqtrd φ K LMod K Ring r P z B w B r Base Scalar K
31 simprrl φ K LMod K Ring r P z B w B z B
32 24 1 syl φ K LMod K Ring r P z B w B B = Base K
33 31 32 eleqtrd φ K LMod K Ring r P z B w B z Base K
34 eqid Base K = Base K
35 eqid Scalar K = Scalar K
36 eqid K = K
37 eqid Base Scalar K = Base Scalar K
38 34 35 36 37 lmodvscl K LMod r Base Scalar K z Base K r K z Base K
39 25 30 33 38 syl3anc φ K LMod K Ring r P z B w B r K z Base K
40 39 32 eleqtrrd φ K LMod K Ring r P z B w B r K z B
41 simprrr φ K LMod K Ring r P z B w B w B
42 4 oveqrspc2v φ r K z B w B r K z K w = r K z L w
43 24 40 41 42 syl12anc φ K LMod K Ring r P z B w B r K z K w = r K z L w
44 8 oveqrspc2v φ r P z B r K z = r L z
45 24 26 31 44 syl12anc φ K LMod K Ring r P z B w B r K z = r L z
46 45 oveq1d φ K LMod K Ring r P z B w B r K z L w = r L z L w
47 43 46 eqtrd φ K LMod K Ring r P z B w B r K z K w = r L z L w
48 simplrr φ K LMod K Ring r P z B w B K Ring
49 41 32 eleqtrd φ K LMod K Ring r P z B w B w Base K
50 eqid K = K
51 34 50 ringcl K Ring z Base K w Base K z K w Base K
52 48 33 49 51 syl3anc φ K LMod K Ring r P z B w B z K w Base K
53 52 32 eleqtrrd φ K LMod K Ring r P z B w B z K w B
54 8 oveqrspc2v φ r P z K w B r K z K w = r L z K w
55 24 26 53 54 syl12anc φ K LMod K Ring r P z B w B r K z K w = r L z K w
56 4 oveqrspc2v φ z B w B z K w = z L w
57 24 31 41 56 syl12anc φ K LMod K Ring r P z B w B z K w = z L w
58 57 oveq2d φ K LMod K Ring r P z B w B r L z K w = r L z L w
59 55 58 eqtrd φ K LMod K Ring r P z B w B r K z K w = r L z L w
60 47 59 eqeq12d φ K LMod K Ring r P z B w B r K z K w = r K z K w r L z L w = r L z L w
61 34 35 36 37 lmodvscl K LMod r Base Scalar K w Base K r K w Base K
62 25 30 49 61 syl3anc φ K LMod K Ring r P z B w B r K w Base K
63 62 32 eleqtrrd φ K LMod K Ring r P z B w B r K w B
64 4 oveqrspc2v φ z B r K w B z K r K w = z L r K w
65 24 31 63 64 syl12anc φ K LMod K Ring r P z B w B z K r K w = z L r K w
66 8 oveqrspc2v φ r P w B r K w = r L w
67 24 26 41 66 syl12anc φ K LMod K Ring r P z B w B r K w = r L w
68 67 oveq2d φ K LMod K Ring r P z B w B z L r K w = z L r L w
69 65 68 eqtrd φ K LMod K Ring r P z B w B z K r K w = z L r L w
70 69 59 eqeq12d φ K LMod K Ring r P z B w B z K r K w = r K z K w z L r L w = r L z L w
71 60 70 anbi12d φ K LMod K Ring r P z B w B r K z K w = r K z K w z K r K w = r K z K w r L z L w = r L z L w z L r L w = r L z L w
72 71 anassrs φ K LMod K Ring r P z B w B r K z K w = r K z K w z K r K w = r K z K w r L z L w = r L z L w z L r L w = r L z L w
73 72 2ralbidva φ K LMod K Ring r P z B w B r K z K w = r K z K w z K r K w = r K z K w z B w B r L z L w = r L z L w z L r L w = r L z L w
74 73 ralbidva φ K LMod K Ring r P z B w B r K z K w = r K z K w z K r K w = r K z K w r P z B w B r L z L w = r L z L w z L r L w = r L z L w
75 28 adantr φ K LMod K Ring P = Base Scalar K
76 1 adantr φ K LMod K Ring B = Base K
77 76 raleqdv φ K LMod K Ring w B r K z K w = r K z K w z K r K w = r K z K w w Base K r K z K w = r K z K w z K r K w = r K z K w
78 76 77 raleqbidv φ K LMod K Ring z B w B r K z K w = r K z K w z K r K w = r K z K w z Base K w Base K r K z K w = r K z K w z K r K w = r K z K w
79 75 78 raleqbidv φ K LMod K Ring r P z B w B r K z K w = r K z K w z K r K w = r K z K w r Base Scalar K z Base K w Base K r K z K w = r K z K w z K r K w = r K z K w
80 6 fveq2d φ Base F = Base Scalar L
81 7 80 eqtrid φ P = Base Scalar L
82 81 adantr φ K LMod K Ring P = Base Scalar L
83 2 adantr φ K LMod K Ring B = Base L
84 83 raleqdv φ K LMod K Ring w B r L z L w = r L z L w z L r L w = r L z L w w Base L r L z L w = r L z L w z L r L w = r L z L w
85 83 84 raleqbidv φ K LMod K Ring z B w B r L z L w = r L z L w z L r L w = r L z L w z Base L w Base L r L z L w = r L z L w z L r L w = r L z L w
86 82 85 raleqbidv φ K LMod K Ring r P z B w B r L z L w = r L z L w z L r L w = r L z L w r Base Scalar L z Base L w Base L r L z L w = r L z L w z L r L w = r L z L w
87 74 79 86 3bitr3d φ K LMod K Ring r Base Scalar K z Base K w Base K r K z K w = r K z K w z K r K w = r K z K w r Base Scalar L z Base L w Base L r L z L w = r L z L w z L r L w = r L z L w
88 23 87 anbi12d φ K LMod K Ring K LMod K Ring Scalar K CRing r Base Scalar K z Base K w Base K r K z K w = r K z K w z K r K w = r K z K w L LMod L Ring Scalar L CRing r Base Scalar L z Base L w Base L r L z L w = r L z L w z L r L w = r L z L w
89 34 35 37 36 50 isassa K AssAlg K LMod K Ring Scalar K CRing r Base Scalar K z Base K w Base K r K z K w = r K z K w z K r K w = r K z K w
90 eqid Base L = Base L
91 eqid Scalar L = Scalar L
92 eqid Base Scalar L = Base Scalar L
93 eqid L = L
94 eqid L = L
95 90 91 92 93 94 isassa L AssAlg L LMod L Ring Scalar L CRing r Base Scalar L z Base L w Base L r L z L w = r L z L w z L r L w = r L z L w
96 88 89 95 3bitr4g φ K LMod K Ring K AssAlg L AssAlg
97 96 ex φ K LMod K Ring K AssAlg L AssAlg
98 12 19 97 pm5.21ndd φ K AssAlg L AssAlg