| Step | Hyp | Ref | Expression | 
						
							| 1 |  | assapropd.1 |  | 
						
							| 2 |  | assapropd.2 |  | 
						
							| 3 |  | assapropd.3 |  | 
						
							| 4 |  | assapropd.4 |  | 
						
							| 5 |  | assapropd.5 |  | 
						
							| 6 |  | assapropd.6 |  | 
						
							| 7 |  | assapropd.7 |  | 
						
							| 8 |  | assapropd.8 |  | 
						
							| 9 |  | assalmod |  | 
						
							| 10 |  | assaring |  | 
						
							| 11 | 9 10 | jca |  | 
						
							| 12 | 11 | a1i |  | 
						
							| 13 |  | assalmod |  | 
						
							| 14 | 1 2 3 5 6 7 8 | lmodpropd |  | 
						
							| 15 | 13 14 | imbitrrid |  | 
						
							| 16 |  | assaring |  | 
						
							| 17 | 1 2 3 4 | ringpropd |  | 
						
							| 18 | 16 17 | imbitrrid |  | 
						
							| 19 | 15 18 | jcad |  | 
						
							| 20 | 14 17 | anbi12d |  | 
						
							| 21 | 20 | adantr |  | 
						
							| 22 |  | simpll |  | 
						
							| 23 |  | simplrl |  | 
						
							| 24 |  | simprl |  | 
						
							| 25 | 5 | fveq2d |  | 
						
							| 26 | 7 25 | eqtrid |  | 
						
							| 27 | 22 26 | syl |  | 
						
							| 28 | 24 27 | eleqtrd |  | 
						
							| 29 |  | simprrl |  | 
						
							| 30 | 22 1 | syl |  | 
						
							| 31 | 29 30 | eleqtrd |  | 
						
							| 32 |  | eqid |  | 
						
							| 33 |  | eqid |  | 
						
							| 34 |  | eqid |  | 
						
							| 35 |  | eqid |  | 
						
							| 36 | 32 33 34 35 | lmodvscl |  | 
						
							| 37 | 23 28 31 36 | syl3anc |  | 
						
							| 38 | 37 30 | eleqtrrd |  | 
						
							| 39 |  | simprrr |  | 
						
							| 40 | 4 | oveqrspc2v |  | 
						
							| 41 | 22 38 39 40 | syl12anc |  | 
						
							| 42 | 8 | oveqrspc2v |  | 
						
							| 43 | 22 24 29 42 | syl12anc |  | 
						
							| 44 | 43 | oveq1d |  | 
						
							| 45 | 41 44 | eqtrd |  | 
						
							| 46 |  | eqid |  | 
						
							| 47 |  | simplrr |  | 
						
							| 48 | 39 30 | eleqtrd |  | 
						
							| 49 | 32 46 47 31 48 | ringcld |  | 
						
							| 50 | 49 30 | eleqtrrd |  | 
						
							| 51 | 8 | oveqrspc2v |  | 
						
							| 52 | 22 24 50 51 | syl12anc |  | 
						
							| 53 | 4 | oveqrspc2v |  | 
						
							| 54 | 22 29 39 53 | syl12anc |  | 
						
							| 55 | 54 | oveq2d |  | 
						
							| 56 | 52 55 | eqtrd |  | 
						
							| 57 | 45 56 | eqeq12d |  | 
						
							| 58 | 32 33 34 35 | lmodvscl |  | 
						
							| 59 | 23 28 48 58 | syl3anc |  | 
						
							| 60 | 59 30 | eleqtrrd |  | 
						
							| 61 | 4 | oveqrspc2v |  | 
						
							| 62 | 22 29 60 61 | syl12anc |  | 
						
							| 63 | 8 | oveqrspc2v |  | 
						
							| 64 | 22 24 39 63 | syl12anc |  | 
						
							| 65 | 64 | oveq2d |  | 
						
							| 66 | 62 65 | eqtrd |  | 
						
							| 67 | 66 56 | eqeq12d |  | 
						
							| 68 | 57 67 | anbi12d |  | 
						
							| 69 | 68 | anassrs |  | 
						
							| 70 | 69 | 2ralbidva |  | 
						
							| 71 | 70 | ralbidva |  | 
						
							| 72 | 26 | adantr |  | 
						
							| 73 | 1 | adantr |  | 
						
							| 74 | 73 | raleqdv |  | 
						
							| 75 | 73 74 | raleqbidv |  | 
						
							| 76 | 72 75 | raleqbidv |  | 
						
							| 77 | 6 | fveq2d |  | 
						
							| 78 | 7 77 | eqtrid |  | 
						
							| 79 | 78 | adantr |  | 
						
							| 80 | 2 | adantr |  | 
						
							| 81 | 80 | raleqdv |  | 
						
							| 82 | 80 81 | raleqbidv |  | 
						
							| 83 | 79 82 | raleqbidv |  | 
						
							| 84 | 71 76 83 | 3bitr3d |  | 
						
							| 85 | 21 84 | anbi12d |  | 
						
							| 86 | 32 33 35 34 46 | isassa |  | 
						
							| 87 |  | eqid |  | 
						
							| 88 |  | eqid |  | 
						
							| 89 |  | eqid |  | 
						
							| 90 |  | eqid |  | 
						
							| 91 |  | eqid |  | 
						
							| 92 | 87 88 89 90 91 | isassa |  | 
						
							| 93 | 85 86 92 | 3bitr4g |  | 
						
							| 94 | 93 | ex |  | 
						
							| 95 | 12 19 94 | pm5.21ndd |  |