Metamath Proof Explorer


Theorem assasca

Description: An associative algebra's scalar field is a commutative ring. (Contributed by Mario Carneiro, 7-Jan-2015)

Ref Expression
Hypothesis assasca.f F = Scalar W
Assertion assasca W AssAlg F CRing

Proof

Step Hyp Ref Expression
1 assasca.f F = Scalar W
2 eqid Base W = Base W
3 eqid Base F = Base F
4 eqid W = W
5 eqid W = W
6 2 1 3 4 5 isassa W AssAlg W LMod W Ring F CRing z Base F x Base W y Base W z W x W y = z W x W y x W z W y = z W x W y
7 6 simplbi W AssAlg W LMod W Ring F CRing
8 7 simp3d W AssAlg F CRing