Metamath Proof Explorer


Theorem assraddsubd

Description: Associate RHS addition-subtraction. (Contributed by David A. Wheeler, 15-Oct-2018)

Ref Expression
Hypotheses assraddsubd.1 φ B
assraddsubd.2 φ C
assraddsubd.3 φ D
assraddsubd.4 φ A = B + C - D
Assertion assraddsubd φ A = B + C - D

Proof

Step Hyp Ref Expression
1 assraddsubd.1 φ B
2 assraddsubd.2 φ C
3 assraddsubd.3 φ D
4 assraddsubd.4 φ A = B + C - D
5 1 2 3 addsubassd φ B + C - D = B + C - D
6 4 5 eqtrd φ A = B + C - D