| Step | Hyp | Ref | Expression | 
						
							| 1 |  | asymref |  | 
						
							| 2 |  | albiim |  | 
						
							| 3 | 2 | ralbii |  | 
						
							| 4 |  | r19.26 |  | 
						
							| 5 |  | ancom |  | 
						
							| 6 |  | equcom |  | 
						
							| 7 | 6 | imbi1i |  | 
						
							| 8 | 7 | albii |  | 
						
							| 9 |  | breq2 |  | 
						
							| 10 |  | breq1 |  | 
						
							| 11 | 9 10 | anbi12d |  | 
						
							| 12 |  | anidm |  | 
						
							| 13 | 11 12 | bitrdi |  | 
						
							| 14 | 13 | equsalvw |  | 
						
							| 15 | 8 14 | bitri |  | 
						
							| 16 | 15 | ralbii |  | 
						
							| 17 |  | df-ral |  | 
						
							| 18 |  | df-br |  | 
						
							| 19 |  | vex |  | 
						
							| 20 |  | vex |  | 
						
							| 21 | 19 20 | opeluu |  | 
						
							| 22 | 21 | simpld |  | 
						
							| 23 | 18 22 | sylbi |  | 
						
							| 24 | 23 | adantr |  | 
						
							| 25 | 24 | pm2.24d |  | 
						
							| 26 | 25 | com12 |  | 
						
							| 27 | 26 | alrimiv |  | 
						
							| 28 |  | id |  | 
						
							| 29 | 27 28 | ja |  | 
						
							| 30 |  | ax-1 |  | 
						
							| 31 | 29 30 | impbii |  | 
						
							| 32 | 31 | albii |  | 
						
							| 33 | 17 32 | bitri |  | 
						
							| 34 | 16 33 | anbi12i |  | 
						
							| 35 | 4 5 34 | 3bitri |  | 
						
							| 36 | 1 3 35 | 3bitri |  |