Metamath Proof Explorer


Theorem atabs2i

Description: Absorption of an incomparable atom. (Contributed by NM, 18-Jul-2004) (New usage is discouraged.)

Ref Expression
Hypotheses atabs.1 A C
atabs.2 B C
Assertion atabs2i C HAtoms ¬ C A B A C A B = A

Proof

Step Hyp Ref Expression
1 atabs.1 A C
2 atabs.2 B C
3 1 2 chjcli A B C
4 1 3 atabsi C HAtoms ¬ C A A B A C A B = A A B
5 1 1 2 chjassi A A B = A A B
6 1 chjidmi A A = A
7 6 oveq1i A A B = A B
8 5 7 eqtr3i A A B = A B
9 8 sseq2i C A A B C A B
10 9 notbii ¬ C A A B ¬ C A B
11 1 2 chabs2i A A B = A
12 11 eqeq2i A C A B = A A B A C A B = A
13 4 10 12 3imtr3g C HAtoms ¬ C A B A C A B = A