Database
BASIC REAL AND COMPLEX FUNCTIONS
Basic trigonometry
Inverse trigonometric functions
atancl
Next ⟩
asinval
Metamath Proof Explorer
Ascii
Unicode
Theorem
atancl
Description:
Closure for the arctan function.
(Contributed by
Mario Carneiro
, 31-Mar-2015)
Ref
Expression
Assertion
atancl
⊢
A
∈
dom
⁡
arctan
→
arctan
⁡
A
∈
ℂ
Proof
Step
Hyp
Ref
Expression
1
atanf
⊢
arctan
:
ℂ
∖
−
i
i
⟶
ℂ
2
1
ffvelrni
⊢
A
∈
ℂ
∖
−
i
i
→
arctan
⁡
A
∈
ℂ
3
1
fdmi
⊢
dom
⁡
arctan
=
ℂ
∖
−
i
i
4
2
3
eleq2s
⊢
A
∈
dom
⁡
arctan
→
arctan
⁡
A
∈
ℂ