Metamath Proof Explorer


Theorem atandm

Description: Since the property is a little lengthy, we abbreviate A e. CC /\ A =/= -ui /\ A =/= i as A e. dom arctan . This is the necessary precondition for the definition of arctan to make sense. (Contributed by Mario Carneiro, 31-Mar-2015)

Ref Expression
Assertion atandm A dom arctan A A i A i

Proof

Step Hyp Ref Expression
1 eldif A i i A ¬ A i i
2 elprg A A i i A = i A = i
3 2 notbid A ¬ A i i ¬ A = i A = i
4 neanior A i A i ¬ A = i A = i
5 3 4 bitr4di A ¬ A i i A i A i
6 5 pm5.32i A ¬ A i i A A i A i
7 1 6 bitri A i i A A i A i
8 ovex i 2 log 1 i x log 1 + i x V
9 df-atan arctan = x i i i 2 log 1 i x log 1 + i x
10 8 9 dmmpti dom arctan = i i
11 10 eleq2i A dom arctan A i i
12 3anass A A i A i A A i A i
13 7 11 12 3bitr4i A dom arctan A A i A i