Metamath Proof Explorer


Theorem atandm3

Description: A compact form of atandm . (Contributed by Mario Carneiro, 31-Mar-2015)

Ref Expression
Assertion atandm3 AdomarctanAA21

Proof

Step Hyp Ref Expression
1 3anass AAiAiAAiAi
2 atandm AdomarctanAAiAi
3 ax-icn i
4 sqeqor AiA2=i2A=iA=i
5 3 4 mpan2 AA2=i2A=iA=i
6 i2 i2=1
7 6 eqeq2i A2=i2A2=1
8 orcom A=iA=iA=iA=i
9 5 7 8 3bitr3g AA2=1A=iA=i
10 9 necon3abid AA21¬A=iA=i
11 neanior AiAi¬A=iA=i
12 10 11 bitr4di AA21AiAi
13 12 pm5.32i AA21AAiAi
14 1 2 13 3bitr4i AdomarctanAA21