Database
BASIC REAL AND COMPLEX FUNCTIONS
Basic trigonometry
Inverse trigonometric functions
atandm3
Next ⟩
atandm4
Metamath Proof Explorer
Ascii
Unicode
Theorem
atandm3
Description:
A compact form of
atandm
.
(Contributed by
Mario Carneiro
, 31-Mar-2015)
Ref
Expression
Assertion
atandm3
⊢
A
∈
dom
⁡
arctan
↔
A
∈
ℂ
∧
A
2
≠
−
1
Proof
Step
Hyp
Ref
Expression
1
3anass
⊢
A
∈
ℂ
∧
A
≠
−
i
∧
A
≠
i
↔
A
∈
ℂ
∧
A
≠
−
i
∧
A
≠
i
2
atandm
⊢
A
∈
dom
⁡
arctan
↔
A
∈
ℂ
∧
A
≠
−
i
∧
A
≠
i
3
ax-icn
⊢
i
∈
ℂ
4
sqeqor
⊢
A
∈
ℂ
∧
i
∈
ℂ
→
A
2
=
i
2
↔
A
=
i
∨
A
=
−
i
5
3
4
mpan2
⊢
A
∈
ℂ
→
A
2
=
i
2
↔
A
=
i
∨
A
=
−
i
6
i2
⊢
i
2
=
−
1
7
6
eqeq2i
⊢
A
2
=
i
2
↔
A
2
=
−
1
8
orcom
⊢
A
=
i
∨
A
=
−
i
↔
A
=
−
i
∨
A
=
i
9
5
7
8
3bitr3g
⊢
A
∈
ℂ
→
A
2
=
−
1
↔
A
=
−
i
∨
A
=
i
10
9
necon3abid
⊢
A
∈
ℂ
→
A
2
≠
−
1
↔
¬
A
=
−
i
∨
A
=
i
11
neanior
⊢
A
≠
−
i
∧
A
≠
i
↔
¬
A
=
−
i
∨
A
=
i
12
10
11
bitr4di
⊢
A
∈
ℂ
→
A
2
≠
−
1
↔
A
≠
−
i
∧
A
≠
i
13
12
pm5.32i
⊢
A
∈
ℂ
∧
A
2
≠
−
1
↔
A
∈
ℂ
∧
A
≠
−
i
∧
A
≠
i
14
1
2
13
3bitr4i
⊢
A
∈
dom
⁡
arctan
↔
A
∈
ℂ
∧
A
2
≠
−
1