Metamath Proof Explorer


Theorem atandm4

Description: A compact form of atandm . (Contributed by Mario Carneiro, 3-Apr-2015)

Ref Expression
Assertion atandm4 A dom arctan A 1 + A 2 0

Proof

Step Hyp Ref Expression
1 atandm3 A dom arctan A A 2 1
2 sqcl A A 2
3 neg1cn 1
4 subeq0 A 2 1 A 2 -1 = 0 A 2 = 1
5 2 3 4 sylancl A A 2 -1 = 0 A 2 = 1
6 ax-1cn 1
7 subneg A 2 1 A 2 -1 = A 2 + 1
8 2 6 7 sylancl A A 2 -1 = A 2 + 1
9 addcom A 2 1 A 2 + 1 = 1 + A 2
10 2 6 9 sylancl A A 2 + 1 = 1 + A 2
11 8 10 eqtrd A A 2 -1 = 1 + A 2
12 11 eqeq1d A A 2 -1 = 0 1 + A 2 = 0
13 5 12 bitr3d A A 2 = 1 1 + A 2 = 0
14 13 necon3bid A A 2 1 1 + A 2 0
15 14 pm5.32i A A 2 1 A 1 + A 2 0
16 1 15 bitri A dom arctan A 1 + A 2 0