Database
BASIC REAL AND COMPLEX FUNCTIONS
Basic trigonometry
Inverse trigonometric functions
atandm4
Next ⟩
atanf
Metamath Proof Explorer
Ascii
Unicode
Theorem
atandm4
Description:
A compact form of
atandm
.
(Contributed by
Mario Carneiro
, 3-Apr-2015)
Ref
Expression
Assertion
atandm4
⊢
A
∈
dom
⁡
arctan
↔
A
∈
ℂ
∧
1
+
A
2
≠
0
Proof
Step
Hyp
Ref
Expression
1
atandm3
⊢
A
∈
dom
⁡
arctan
↔
A
∈
ℂ
∧
A
2
≠
−
1
2
sqcl
⊢
A
∈
ℂ
→
A
2
∈
ℂ
3
neg1cn
⊢
−
1
∈
ℂ
4
subeq0
⊢
A
2
∈
ℂ
∧
−
1
∈
ℂ
→
A
2
−
-1
=
0
↔
A
2
=
−
1
5
2
3
4
sylancl
⊢
A
∈
ℂ
→
A
2
−
-1
=
0
↔
A
2
=
−
1
6
ax-1cn
⊢
1
∈
ℂ
7
subneg
⊢
A
2
∈
ℂ
∧
1
∈
ℂ
→
A
2
−
-1
=
A
2
+
1
8
2
6
7
sylancl
⊢
A
∈
ℂ
→
A
2
−
-1
=
A
2
+
1
9
addcom
⊢
A
2
∈
ℂ
∧
1
∈
ℂ
→
A
2
+
1
=
1
+
A
2
10
2
6
9
sylancl
⊢
A
∈
ℂ
→
A
2
+
1
=
1
+
A
2
11
8
10
eqtrd
⊢
A
∈
ℂ
→
A
2
−
-1
=
1
+
A
2
12
11
eqeq1d
⊢
A
∈
ℂ
→
A
2
−
-1
=
0
↔
1
+
A
2
=
0
13
5
12
bitr3d
⊢
A
∈
ℂ
→
A
2
=
−
1
↔
1
+
A
2
=
0
14
13
necon3bid
⊢
A
∈
ℂ
→
A
2
≠
−
1
↔
1
+
A
2
≠
0
15
14
pm5.32i
⊢
A
∈
ℂ
∧
A
2
≠
−
1
↔
A
∈
ℂ
∧
1
+
A
2
≠
0
16
1
15
bitri
⊢
A
∈
dom
⁡
arctan
↔
A
∈
ℂ
∧
1
+
A
2
≠
0