Metamath Proof Explorer


Theorem atandmcj

Description: The arctangent function distributes under conjugation. (Contributed by Mario Carneiro, 31-Mar-2015)

Ref Expression
Assertion atandmcj A dom arctan A dom arctan

Proof

Step Hyp Ref Expression
1 atandm3 A dom arctan A A 2 1
2 1 simplbi A dom arctan A
3 2 cjcld A dom arctan A
4 2nn0 2 0
5 cjexp A 2 0 A 2 = A 2
6 2 4 5 sylancl A dom arctan A 2 = A 2
7 2 sqcld A dom arctan A 2
8 7 cjcjd A dom arctan A 2 = A 2
9 1 simprbi A dom arctan A 2 1
10 8 9 eqnetrd A dom arctan A 2 1
11 fveq2 A 2 = 1 A 2 = 1
12 neg1rr 1
13 cjre 1 1 = 1
14 12 13 ax-mp 1 = 1
15 11 14 eqtrdi A 2 = 1 A 2 = 1
16 15 necon3i A 2 1 A 2 1
17 10 16 syl A dom arctan A 2 1
18 6 17 eqnetrrd A dom arctan A 2 1
19 atandm3 A dom arctan A A 2 1
20 3 18 19 sylanbrc A dom arctan A dom arctan