Step |
Hyp |
Ref |
Expression |
1 |
|
tancl |
|
2 |
|
tanval |
|
3 |
2
|
oveq1d |
|
4 |
|
sincl |
|
5 |
4
|
adantr |
|
6 |
|
coscl |
|
7 |
6
|
adantr |
|
8 |
|
simpr |
|
9 |
5 7 8
|
sqdivd |
|
10 |
3 9
|
eqtrd |
|
11 |
5
|
sqcld |
|
12 |
7
|
sqcld |
|
13 |
12
|
negcld |
|
14 |
11 12
|
subnegd |
|
15 |
|
sincossq |
|
16 |
15
|
adantr |
|
17 |
14 16
|
eqtrd |
|
18 |
|
ax-1ne0 |
|
19 |
18
|
a1i |
|
20 |
17 19
|
eqnetrd |
|
21 |
11 13 20
|
subne0ad |
|
22 |
12
|
mulm1d |
|
23 |
21 22
|
neeqtrrd |
|
24 |
|
neg1cn |
|
25 |
24
|
a1i |
|
26 |
|
sqne0 |
|
27 |
6 26
|
syl |
|
28 |
27
|
biimpar |
|
29 |
11 25 12 28
|
divmul3d |
|
30 |
29
|
necon3bid |
|
31 |
23 30
|
mpbird |
|
32 |
10 31
|
eqnetrd |
|
33 |
|
atandm3 |
|
34 |
1 32 33
|
sylanbrc |
|