Metamath Proof Explorer


Theorem atanf

Description: Domain and range of the arctan function. (Contributed by Mario Carneiro, 31-Mar-2015)

Ref Expression
Assertion atanf arctan : i i

Proof

Step Hyp Ref Expression
1 df-atan arctan = x i i i 2 log 1 i x log 1 + i x
2 ovex i 2 log 1 i x log 1 + i x V
3 2 1 dmmpti dom arctan = i i
4 3 eleq2i x dom arctan x i i
5 ax-icn i
6 halfcl i i 2
7 5 6 ax-mp i 2
8 ax-1cn 1
9 atandm2 x dom arctan x 1 i x 0 1 + i x 0
10 9 simp1bi x dom arctan x
11 mulcl i x i x
12 5 10 11 sylancr x dom arctan i x
13 subcl 1 i x 1 i x
14 8 12 13 sylancr x dom arctan 1 i x
15 9 simp2bi x dom arctan 1 i x 0
16 14 15 logcld x dom arctan log 1 i x
17 addcl 1 i x 1 + i x
18 8 12 17 sylancr x dom arctan 1 + i x
19 9 simp3bi x dom arctan 1 + i x 0
20 18 19 logcld x dom arctan log 1 + i x
21 16 20 subcld x dom arctan log 1 i x log 1 + i x
22 mulcl i 2 log 1 i x log 1 + i x i 2 log 1 i x log 1 + i x
23 7 21 22 sylancr x dom arctan i 2 log 1 i x log 1 + i x
24 4 23 sylbir x i i i 2 log 1 i x log 1 + i x
25 1 24 fmpti arctan : i i