Metamath Proof Explorer


Theorem atanlogadd

Description: The rule sqrt ( z w ) = ( sqrt z ) ( sqrt w ) is not always true on the complex numbers, but it is true when the arguments of z and w sum to within the interval ( -upi , pi ] , so there are some cases such as this one with z = 1 +i A and w = 1 - i A which are true unconditionally. This result can also be stated as " sqrt ( 1 + z ) + sqrt ( 1 - z ) is analytic". (Contributed by Mario Carneiro, 3-Apr-2015)

Ref Expression
Assertion atanlogadd A dom arctan log 1 + i A + log 1 i A ran log

Proof

Step Hyp Ref Expression
1 0red A dom arctan 0
2 atandm2 A dom arctan A 1 i A 0 1 + i A 0
3 2 simp1bi A dom arctan A
4 3 recld A dom arctan A
5 atanlogaddlem A dom arctan 0 A log 1 + i A + log 1 i A ran log
6 ax-1cn 1
7 ax-icn i
8 mulcl i A i A
9 7 3 8 sylancr A dom arctan i A
10 addcl 1 i A 1 + i A
11 6 9 10 sylancr A dom arctan 1 + i A
12 2 simp3bi A dom arctan 1 + i A 0
13 11 12 logcld A dom arctan log 1 + i A
14 subcl 1 i A 1 i A
15 6 9 14 sylancr A dom arctan 1 i A
16 2 simp2bi A dom arctan 1 i A 0
17 15 16 logcld A dom arctan log 1 i A
18 13 17 addcomd A dom arctan log 1 + i A + log 1 i A = log 1 i A + log 1 + i A
19 mulneg2 i A i A = i A
20 7 3 19 sylancr A dom arctan i A = i A
21 20 oveq2d A dom arctan 1 + i A = 1 + i A
22 negsub 1 i A 1 + i A = 1 i A
23 6 9 22 sylancr A dom arctan 1 + i A = 1 i A
24 21 23 eqtrd A dom arctan 1 + i A = 1 i A
25 24 fveq2d A dom arctan log 1 + i A = log 1 i A
26 20 oveq2d A dom arctan 1 i A = 1 i A
27 subneg 1 i A 1 i A = 1 + i A
28 6 9 27 sylancr A dom arctan 1 i A = 1 + i A
29 26 28 eqtrd A dom arctan 1 i A = 1 + i A
30 29 fveq2d A dom arctan log 1 i A = log 1 + i A
31 25 30 oveq12d A dom arctan log 1 + i A + log 1 i A = log 1 i A + log 1 + i A
32 18 31 eqtr4d A dom arctan log 1 + i A + log 1 i A = log 1 + i A + log 1 i A
33 32 adantr A dom arctan A 0 log 1 + i A + log 1 i A = log 1 + i A + log 1 i A
34 atandmneg A dom arctan A dom arctan
35 4 le0neg1d A dom arctan A 0 0 A
36 35 biimpa A dom arctan A 0 0 A
37 3 renegd A dom arctan A = A
38 37 adantr A dom arctan A 0 A = A
39 36 38 breqtrrd A dom arctan A 0 0 A
40 atanlogaddlem A dom arctan 0 A log 1 + i A + log 1 i A ran log
41 34 39 40 syl2an2r A dom arctan A 0 log 1 + i A + log 1 i A ran log
42 33 41 eqeltrd A dom arctan A 0 log 1 + i A + log 1 i A ran log
43 1 4 5 42 lecasei A dom arctan log 1 + i A + log 1 i A ran log