| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0red |
|
| 2 |
|
atandm2 |
|
| 3 |
2
|
simp1bi |
|
| 4 |
3
|
recld |
|
| 5 |
|
atanlogaddlem |
|
| 6 |
|
ax-1cn |
|
| 7 |
|
ax-icn |
|
| 8 |
|
mulcl |
|
| 9 |
7 3 8
|
sylancr |
|
| 10 |
|
addcl |
|
| 11 |
6 9 10
|
sylancr |
|
| 12 |
2
|
simp3bi |
|
| 13 |
11 12
|
logcld |
|
| 14 |
|
subcl |
|
| 15 |
6 9 14
|
sylancr |
|
| 16 |
2
|
simp2bi |
|
| 17 |
15 16
|
logcld |
|
| 18 |
13 17
|
addcomd |
|
| 19 |
|
mulneg2 |
|
| 20 |
7 3 19
|
sylancr |
|
| 21 |
20
|
oveq2d |
|
| 22 |
|
negsub |
|
| 23 |
6 9 22
|
sylancr |
|
| 24 |
21 23
|
eqtrd |
|
| 25 |
24
|
fveq2d |
|
| 26 |
20
|
oveq2d |
|
| 27 |
|
subneg |
|
| 28 |
6 9 27
|
sylancr |
|
| 29 |
26 28
|
eqtrd |
|
| 30 |
29
|
fveq2d |
|
| 31 |
25 30
|
oveq12d |
|
| 32 |
18 31
|
eqtr4d |
|
| 33 |
32
|
adantr |
|
| 34 |
|
atandmneg |
|
| 35 |
4
|
le0neg1d |
|
| 36 |
35
|
biimpa |
|
| 37 |
3
|
renegd |
|
| 38 |
37
|
adantr |
|
| 39 |
36 38
|
breqtrrd |
|
| 40 |
|
atanlogaddlem |
|
| 41 |
34 39 40
|
syl2an2r |
|
| 42 |
33 41
|
eqeltrd |
|
| 43 |
1 4 5 42
|
lecasei |
|