Step |
Hyp |
Ref |
Expression |
1 |
|
0red |
|
2 |
|
atandm2 |
|
3 |
2
|
simp1bi |
|
4 |
3
|
recld |
|
5 |
|
atanlogaddlem |
|
6 |
|
ax-1cn |
|
7 |
|
ax-icn |
|
8 |
|
mulcl |
|
9 |
7 3 8
|
sylancr |
|
10 |
|
addcl |
|
11 |
6 9 10
|
sylancr |
|
12 |
2
|
simp3bi |
|
13 |
11 12
|
logcld |
|
14 |
|
subcl |
|
15 |
6 9 14
|
sylancr |
|
16 |
2
|
simp2bi |
|
17 |
15 16
|
logcld |
|
18 |
13 17
|
addcomd |
|
19 |
|
mulneg2 |
|
20 |
7 3 19
|
sylancr |
|
21 |
20
|
oveq2d |
|
22 |
|
negsub |
|
23 |
6 9 22
|
sylancr |
|
24 |
21 23
|
eqtrd |
|
25 |
24
|
fveq2d |
|
26 |
20
|
oveq2d |
|
27 |
|
subneg |
|
28 |
6 9 27
|
sylancr |
|
29 |
26 28
|
eqtrd |
|
30 |
29
|
fveq2d |
|
31 |
25 30
|
oveq12d |
|
32 |
18 31
|
eqtr4d |
|
33 |
32
|
adantr |
|
34 |
|
atandmneg |
|
35 |
4
|
le0neg1d |
|
36 |
35
|
biimpa |
|
37 |
3
|
renegd |
|
38 |
37
|
adantr |
|
39 |
36 38
|
breqtrrd |
|
40 |
|
atanlogaddlem |
|
41 |
34 39 40
|
syl2an2r |
|
42 |
33 41
|
eqeltrd |
|
43 |
1 4 5 42
|
lecasei |
|