Metamath Proof Explorer


Theorem atanlogaddlem

Description: Lemma for atanlogadd . (Contributed by Mario Carneiro, 3-Apr-2015)

Ref Expression
Assertion atanlogaddlem A dom arctan 0 A log 1 + i A + log 1 i A ran log

Proof

Step Hyp Ref Expression
1 0re 0
2 atandm2 A dom arctan A 1 i A 0 1 + i A 0
3 2 simp1bi A dom arctan A
4 3 recld A dom arctan A
5 leloe 0 A 0 A 0 < A 0 = A
6 1 4 5 sylancr A dom arctan 0 A 0 < A 0 = A
7 6 biimpa A dom arctan 0 A 0 < A 0 = A
8 ax-1cn 1
9 ax-icn i
10 mulcl i A i A
11 9 3 10 sylancr A dom arctan i A
12 addcl 1 i A 1 + i A
13 8 11 12 sylancr A dom arctan 1 + i A
14 2 simp3bi A dom arctan 1 + i A 0
15 13 14 logcld A dom arctan log 1 + i A
16 subcl 1 i A 1 i A
17 8 11 16 sylancr A dom arctan 1 i A
18 2 simp2bi A dom arctan 1 i A 0
19 17 18 logcld A dom arctan log 1 i A
20 15 19 addcld A dom arctan log 1 + i A + log 1 i A
21 20 adantr A dom arctan 0 < A log 1 + i A + log 1 i A
22 pire π
23 22 renegcli π
24 23 a1i A dom arctan 0 < A π
25 19 adantr A dom arctan 0 < A log 1 i A
26 25 imcld A dom arctan 0 < A log 1 i A
27 15 adantr A dom arctan 0 < A log 1 + i A
28 27 imcld A dom arctan 0 < A log 1 + i A
29 28 26 readdcld A dom arctan 0 < A log 1 + i A + log 1 i A
30 17 adantr A dom arctan 0 < A 1 i A
31 im1 1 = 0
32 31 oveq1i 1 i A = 0 i A
33 df-neg i A = 0 i A
34 32 33 eqtr4i 1 i A = i A
35 11 adantr A dom arctan 0 < A i A
36 imsub 1 i A 1 i A = 1 i A
37 8 35 36 sylancr A dom arctan 0 < A 1 i A = 1 i A
38 3 adantr A dom arctan 0 < A A
39 reim A A = i A
40 38 39 syl A dom arctan 0 < A A = i A
41 40 negeqd A dom arctan 0 < A A = i A
42 34 37 41 3eqtr4a A dom arctan 0 < A 1 i A = A
43 4 lt0neg2d A dom arctan 0 < A A < 0
44 43 biimpa A dom arctan 0 < A A < 0
45 42 44 eqbrtrd A dom arctan 0 < A 1 i A < 0
46 argimlt0 1 i A 1 i A < 0 log 1 i A π 0
47 30 45 46 syl2anc A dom arctan 0 < A log 1 i A π 0
48 eliooord log 1 i A π 0 π < log 1 i A log 1 i A < 0
49 47 48 syl A dom arctan 0 < A π < log 1 i A log 1 i A < 0
50 49 simpld A dom arctan 0 < A π < log 1 i A
51 13 adantr A dom arctan 0 < A 1 + i A
52 simpr A dom arctan 0 < A 0 < A
53 imadd 1 i A 1 + i A = 1 + i A
54 8 35 53 sylancr A dom arctan 0 < A 1 + i A = 1 + i A
55 40 oveq2d A dom arctan 0 < A 1 + A = 1 + i A
56 31 oveq1i 1 + A = 0 + A
57 38 recld A dom arctan 0 < A A
58 57 recnd A dom arctan 0 < A A
59 58 addid2d A dom arctan 0 < A 0 + A = A
60 56 59 eqtrid A dom arctan 0 < A 1 + A = A
61 54 55 60 3eqtr2d A dom arctan 0 < A 1 + i A = A
62 52 61 breqtrrd A dom arctan 0 < A 0 < 1 + i A
63 argimgt0 1 + i A 0 < 1 + i A log 1 + i A 0 π
64 51 62 63 syl2anc A dom arctan 0 < A log 1 + i A 0 π
65 eliooord log 1 + i A 0 π 0 < log 1 + i A log 1 + i A < π
66 64 65 syl A dom arctan 0 < A 0 < log 1 + i A log 1 + i A < π
67 66 simpld A dom arctan 0 < A 0 < log 1 + i A
68 28 26 ltaddpos2d A dom arctan 0 < A 0 < log 1 + i A log 1 i A < log 1 + i A + log 1 i A
69 67 68 mpbid A dom arctan 0 < A log 1 i A < log 1 + i A + log 1 i A
70 24 26 29 50 69 lttrd A dom arctan 0 < A π < log 1 + i A + log 1 i A
71 27 25 imaddd A dom arctan 0 < A log 1 + i A + log 1 i A = log 1 + i A + log 1 i A
72 70 71 breqtrrd A dom arctan 0 < A π < log 1 + i A + log 1 i A
73 22 a1i A dom arctan 0 < A π
74 0red A dom arctan 0 < A 0
75 49 simprd A dom arctan 0 < A log 1 i A < 0
76 26 74 28 75 ltadd2dd A dom arctan 0 < A log 1 + i A + log 1 i A < log 1 + i A + 0
77 28 recnd A dom arctan 0 < A log 1 + i A
78 77 addid1d A dom arctan 0 < A log 1 + i A + 0 = log 1 + i A
79 76 78 breqtrd A dom arctan 0 < A log 1 + i A + log 1 i A < log 1 + i A
80 66 simprd A dom arctan 0 < A log 1 + i A < π
81 29 28 73 79 80 lttrd A dom arctan 0 < A log 1 + i A + log 1 i A < π
82 29 73 81 ltled A dom arctan 0 < A log 1 + i A + log 1 i A π
83 71 82 eqbrtrd A dom arctan 0 < A log 1 + i A + log 1 i A π
84 ellogrn log 1 + i A + log 1 i A ran log log 1 + i A + log 1 i A π < log 1 + i A + log 1 i A log 1 + i A + log 1 i A π
85 21 72 83 84 syl3anbrc A dom arctan 0 < A log 1 + i A + log 1 i A ran log
86 0red A dom arctan 0 = A 0
87 11 adantr A dom arctan 0 = A i A
88 simpr A dom arctan 0 = A 0 = A
89 3 adantr A dom arctan 0 = A A
90 89 39 syl A dom arctan 0 = A A = i A
91 88 90 eqtr2d A dom arctan 0 = A i A = 0
92 87 91 reim0bd A dom arctan 0 = A i A
93 15 19 addcomd A dom arctan log 1 + i A + log 1 i A = log 1 i A + log 1 + i A
94 93 ad2antrr A dom arctan 0 = A 0 i A log 1 + i A + log 1 i A = log 1 i A + log 1 + i A
95 logrncl 1 i A 1 i A 0 log 1 i A ran log
96 17 18 95 syl2anc A dom arctan log 1 i A ran log
97 96 ad2antrr A dom arctan 0 = A 0 i A log 1 i A ran log
98 1re 1
99 92 adantr A dom arctan 0 = A 0 i A i A
100 readdcl 1 i A 1 + i A
101 98 99 100 sylancr A dom arctan 0 = A 0 i A 1 + i A
102 0red A dom arctan 0 = A 0 i A 0
103 1red A dom arctan 0 = A 0 i A 1
104 0lt1 0 < 1
105 104 a1i A dom arctan 0 = A 0 i A 0 < 1
106 addge01 1 i A 0 i A 1 1 + i A
107 98 92 106 sylancr A dom arctan 0 = A 0 i A 1 1 + i A
108 107 biimpa A dom arctan 0 = A 0 i A 1 1 + i A
109 102 103 101 105 108 ltletrd A dom arctan 0 = A 0 i A 0 < 1 + i A
110 101 109 elrpd A dom arctan 0 = A 0 i A 1 + i A +
111 110 relogcld A dom arctan 0 = A 0 i A log 1 + i A
112 logrnaddcl log 1 i A ran log log 1 + i A log 1 i A + log 1 + i A ran log
113 97 111 112 syl2anc A dom arctan 0 = A 0 i A log 1 i A + log 1 + i A ran log
114 94 113 eqeltrd A dom arctan 0 = A 0 i A log 1 + i A + log 1 i A ran log
115 logrncl 1 + i A 1 + i A 0 log 1 + i A ran log
116 13 14 115 syl2anc A dom arctan log 1 + i A ran log
117 116 ad2antrr A dom arctan 0 = A i A 0 log 1 + i A ran log
118 92 adantr A dom arctan 0 = A i A 0 i A
119 resubcl 1 i A 1 i A
120 98 118 119 sylancr A dom arctan 0 = A i A 0 1 i A
121 0red A dom arctan 0 = A i A 0 0
122 1red A dom arctan 0 = A i A 0 1
123 104 a1i A dom arctan 0 = A i A 0 0 < 1
124 1m0e1 1 0 = 1
125 1red A dom arctan 0 = A 1
126 92 86 125 lesub2d A dom arctan 0 = A i A 0 1 0 1 i A
127 126 biimpa A dom arctan 0 = A i A 0 1 0 1 i A
128 124 127 eqbrtrrid A dom arctan 0 = A i A 0 1 1 i A
129 121 122 120 123 128 ltletrd A dom arctan 0 = A i A 0 0 < 1 i A
130 120 129 elrpd A dom arctan 0 = A i A 0 1 i A +
131 130 relogcld A dom arctan 0 = A i A 0 log 1 i A
132 logrnaddcl log 1 + i A ran log log 1 i A log 1 + i A + log 1 i A ran log
133 117 131 132 syl2anc A dom arctan 0 = A i A 0 log 1 + i A + log 1 i A ran log
134 86 92 114 133 lecasei A dom arctan 0 = A log 1 + i A + log 1 i A ran log
135 85 134 jaodan A dom arctan 0 < A 0 = A log 1 + i A + log 1 i A ran log
136 7 135 syldan A dom arctan 0 A log 1 + i A + log 1 i A ran log