Step |
Hyp |
Ref |
Expression |
1 |
|
ax-1cn |
|
2 |
|
ax-icn |
|
3 |
|
atandm2 |
|
4 |
3
|
simp1bi |
|
5 |
|
mulcl |
|
6 |
2 4 5
|
sylancr |
|
7 |
|
addcl |
|
8 |
1 6 7
|
sylancr |
|
9 |
3
|
simp3bi |
|
10 |
8 9
|
logcld |
|
11 |
|
subcl |
|
12 |
1 6 11
|
sylancr |
|
13 |
3
|
simp2bi |
|
14 |
12 13
|
logcld |
|
15 |
10 14
|
subcld |
|
16 |
15
|
adantr |
|
17 |
4
|
recld |
|
18 |
|
0re |
|
19 |
|
lttri2 |
|
20 |
17 18 19
|
sylancl |
|
21 |
20
|
biimpa |
|
22 |
15
|
imnegd |
|
23 |
10 14
|
negsubdi2d |
|
24 |
|
mulneg2 |
|
25 |
2 4 24
|
sylancr |
|
26 |
25
|
oveq2d |
|
27 |
|
negsub |
|
28 |
1 6 27
|
sylancr |
|
29 |
26 28
|
eqtrd |
|
30 |
29
|
fveq2d |
|
31 |
25
|
oveq2d |
|
32 |
|
subneg |
|
33 |
1 6 32
|
sylancr |
|
34 |
31 33
|
eqtrd |
|
35 |
34
|
fveq2d |
|
36 |
30 35
|
oveq12d |
|
37 |
23 36
|
eqtr4d |
|
38 |
37
|
fveq2d |
|
39 |
22 38
|
eqtr3d |
|
40 |
39
|
adantr |
|
41 |
|
atandmneg |
|
42 |
17
|
lt0neg1d |
|
43 |
42
|
biimpa |
|
44 |
4
|
adantr |
|
45 |
44
|
renegd |
|
46 |
43 45
|
breqtrrd |
|
47 |
|
atanlogsublem |
|
48 |
41 46 47
|
syl2an2r |
|
49 |
|
picn |
|
50 |
49
|
negnegi |
|
51 |
50
|
oveq2i |
|
52 |
48 51
|
eleqtrrdi |
|
53 |
40 52
|
eqeltrd |
|
54 |
|
pire |
|
55 |
54
|
renegcli |
|
56 |
15
|
adantr |
|
57 |
56
|
imcld |
|
58 |
|
iooneg |
|
59 |
55 54 57 58
|
mp3an12i |
|
60 |
53 59
|
mpbird |
|
61 |
|
atanlogsublem |
|
62 |
60 61
|
jaodan |
|
63 |
21 62
|
syldan |
|
64 |
|
eliooord |
|
65 |
63 64
|
syl |
|
66 |
65
|
simpld |
|
67 |
65
|
simprd |
|
68 |
16
|
imcld |
|
69 |
|
ltle |
|
70 |
68 54 69
|
sylancl |
|
71 |
67 70
|
mpd |
|
72 |
|
ellogrn |
|
73 |
16 66 71 72
|
syl3anbrc |
|