| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ax-1cn |
|
| 2 |
|
ax-icn |
|
| 3 |
|
atandm2 |
|
| 4 |
3
|
simp1bi |
|
| 5 |
|
mulcl |
|
| 6 |
2 4 5
|
sylancr |
|
| 7 |
|
addcl |
|
| 8 |
1 6 7
|
sylancr |
|
| 9 |
3
|
simp3bi |
|
| 10 |
8 9
|
logcld |
|
| 11 |
|
subcl |
|
| 12 |
1 6 11
|
sylancr |
|
| 13 |
3
|
simp2bi |
|
| 14 |
12 13
|
logcld |
|
| 15 |
10 14
|
subcld |
|
| 16 |
15
|
adantr |
|
| 17 |
4
|
recld |
|
| 18 |
|
0re |
|
| 19 |
|
lttri2 |
|
| 20 |
17 18 19
|
sylancl |
|
| 21 |
20
|
biimpa |
|
| 22 |
15
|
imnegd |
|
| 23 |
10 14
|
negsubdi2d |
|
| 24 |
|
mulneg2 |
|
| 25 |
2 4 24
|
sylancr |
|
| 26 |
25
|
oveq2d |
|
| 27 |
|
negsub |
|
| 28 |
1 6 27
|
sylancr |
|
| 29 |
26 28
|
eqtrd |
|
| 30 |
29
|
fveq2d |
|
| 31 |
25
|
oveq2d |
|
| 32 |
|
subneg |
|
| 33 |
1 6 32
|
sylancr |
|
| 34 |
31 33
|
eqtrd |
|
| 35 |
34
|
fveq2d |
|
| 36 |
30 35
|
oveq12d |
|
| 37 |
23 36
|
eqtr4d |
|
| 38 |
37
|
fveq2d |
|
| 39 |
22 38
|
eqtr3d |
|
| 40 |
39
|
adantr |
|
| 41 |
|
atandmneg |
|
| 42 |
17
|
lt0neg1d |
|
| 43 |
42
|
biimpa |
|
| 44 |
4
|
adantr |
|
| 45 |
44
|
renegd |
|
| 46 |
43 45
|
breqtrrd |
|
| 47 |
|
atanlogsublem |
|
| 48 |
41 46 47
|
syl2an2r |
|
| 49 |
|
picn |
|
| 50 |
49
|
negnegi |
|
| 51 |
50
|
oveq2i |
|
| 52 |
48 51
|
eleqtrrdi |
|
| 53 |
40 52
|
eqeltrd |
|
| 54 |
|
pire |
|
| 55 |
54
|
renegcli |
|
| 56 |
15
|
adantr |
|
| 57 |
56
|
imcld |
|
| 58 |
|
iooneg |
|
| 59 |
55 54 57 58
|
mp3an12i |
|
| 60 |
53 59
|
mpbird |
|
| 61 |
|
atanlogsublem |
|
| 62 |
60 61
|
jaodan |
|
| 63 |
21 62
|
syldan |
|
| 64 |
|
eliooord |
|
| 65 |
63 64
|
syl |
|
| 66 |
65
|
simpld |
|
| 67 |
65
|
simprd |
|
| 68 |
16
|
imcld |
|
| 69 |
|
ltle |
|
| 70 |
68 54 69
|
sylancl |
|
| 71 |
67 70
|
mpd |
|
| 72 |
|
ellogrn |
|
| 73 |
16 66 71 72
|
syl3anbrc |
|