Step |
Hyp |
Ref |
Expression |
1 |
|
ax-icn |
|
2 |
|
atandm2 |
|
3 |
2
|
simp1bi |
|
4 |
|
mulneg2 |
|
5 |
1 3 4
|
sylancr |
|
6 |
5
|
oveq2d |
|
7 |
|
ax-1cn |
|
8 |
|
mulcl |
|
9 |
1 3 8
|
sylancr |
|
10 |
|
subneg |
|
11 |
7 9 10
|
sylancr |
|
12 |
6 11
|
eqtrd |
|
13 |
12
|
fveq2d |
|
14 |
5
|
oveq2d |
|
15 |
|
negsub |
|
16 |
7 9 15
|
sylancr |
|
17 |
14 16
|
eqtrd |
|
18 |
17
|
fveq2d |
|
19 |
13 18
|
oveq12d |
|
20 |
|
subcl |
|
21 |
7 9 20
|
sylancr |
|
22 |
2
|
simp2bi |
|
23 |
21 22
|
logcld |
|
24 |
|
addcl |
|
25 |
7 9 24
|
sylancr |
|
26 |
2
|
simp3bi |
|
27 |
25 26
|
logcld |
|
28 |
23 27
|
negsubdi2d |
|
29 |
19 28
|
eqtr4d |
|
30 |
29
|
oveq2d |
|
31 |
|
halfcl |
|
32 |
1 31
|
ax-mp |
|
33 |
23 27
|
subcld |
|
34 |
|
mulneg2 |
|
35 |
32 33 34
|
sylancr |
|
36 |
30 35
|
eqtrd |
|
37 |
|
atandmneg |
|
38 |
|
atanval |
|
39 |
37 38
|
syl |
|
40 |
|
atanval |
|
41 |
40
|
negeqd |
|
42 |
36 39 41
|
3eqtr4d |
|