Metamath Proof Explorer


Theorem atanneg

Description: The arctangent function is odd. (Contributed by Mario Carneiro, 3-Apr-2015)

Ref Expression
Assertion atanneg A dom arctan arctan A = arctan A

Proof

Step Hyp Ref Expression
1 ax-icn i
2 atandm2 A dom arctan A 1 i A 0 1 + i A 0
3 2 simp1bi A dom arctan A
4 mulneg2 i A i A = i A
5 1 3 4 sylancr A dom arctan i A = i A
6 5 oveq2d A dom arctan 1 i A = 1 i A
7 ax-1cn 1
8 mulcl i A i A
9 1 3 8 sylancr A dom arctan i A
10 subneg 1 i A 1 i A = 1 + i A
11 7 9 10 sylancr A dom arctan 1 i A = 1 + i A
12 6 11 eqtrd A dom arctan 1 i A = 1 + i A
13 12 fveq2d A dom arctan log 1 i A = log 1 + i A
14 5 oveq2d A dom arctan 1 + i A = 1 + i A
15 negsub 1 i A 1 + i A = 1 i A
16 7 9 15 sylancr A dom arctan 1 + i A = 1 i A
17 14 16 eqtrd A dom arctan 1 + i A = 1 i A
18 17 fveq2d A dom arctan log 1 + i A = log 1 i A
19 13 18 oveq12d A dom arctan log 1 i A log 1 + i A = log 1 + i A log 1 i A
20 subcl 1 i A 1 i A
21 7 9 20 sylancr A dom arctan 1 i A
22 2 simp2bi A dom arctan 1 i A 0
23 21 22 logcld A dom arctan log 1 i A
24 addcl 1 i A 1 + i A
25 7 9 24 sylancr A dom arctan 1 + i A
26 2 simp3bi A dom arctan 1 + i A 0
27 25 26 logcld A dom arctan log 1 + i A
28 23 27 negsubdi2d A dom arctan log 1 i A log 1 + i A = log 1 + i A log 1 i A
29 19 28 eqtr4d A dom arctan log 1 i A log 1 + i A = log 1 i A log 1 + i A
30 29 oveq2d A dom arctan i 2 log 1 i A log 1 + i A = i 2 log 1 i A log 1 + i A
31 halfcl i i 2
32 1 31 ax-mp i 2
33 23 27 subcld A dom arctan log 1 i A log 1 + i A
34 mulneg2 i 2 log 1 i A log 1 + i A i 2 log 1 i A log 1 + i A = i 2 log 1 i A log 1 + i A
35 32 33 34 sylancr A dom arctan i 2 log 1 i A log 1 + i A = i 2 log 1 i A log 1 + i A
36 30 35 eqtrd A dom arctan i 2 log 1 i A log 1 + i A = i 2 log 1 i A log 1 + i A
37 atandmneg A dom arctan A dom arctan
38 atanval A dom arctan arctan A = i 2 log 1 i A log 1 + i A
39 37 38 syl A dom arctan arctan A = i 2 log 1 i A log 1 + i A
40 atanval A dom arctan arctan A = i 2 log 1 i A log 1 + i A
41 40 negeqd A dom arctan arctan A = i 2 log 1 i A log 1 + i A
42 36 39 41 3eqtr4d A dom arctan arctan A = arctan A