Metamath Proof Explorer


Theorem atanord

Description: The arctangent function is strictly increasing. (Contributed by Mario Carneiro, 5-Apr-2015)

Ref Expression
Assertion atanord A B A < B arctan A < arctan B

Proof

Step Hyp Ref Expression
1 atanbnd A arctan A π 2 π 2
2 atanbnd B arctan B π 2 π 2
3 tanord arctan A π 2 π 2 arctan B π 2 π 2 arctan A < arctan B tan arctan A < tan arctan B
4 1 2 3 syl2an A B arctan A < arctan B tan arctan A < tan arctan B
5 atanre A A dom arctan
6 tanatan A dom arctan tan arctan A = A
7 5 6 syl A tan arctan A = A
8 atanre B B dom arctan
9 tanatan B dom arctan tan arctan B = B
10 8 9 syl B tan arctan B = B
11 7 10 breqan12d A B tan arctan A < tan arctan B A < B
12 4 11 bitr2d A B A < B arctan A < arctan B