Metamath Proof Explorer


Theorem atanre

Description: A real number is in the domain of the arctangent function. (Contributed by Mario Carneiro, 31-Mar-2015)

Ref Expression
Assertion atanre A A dom arctan

Proof

Step Hyp Ref Expression
1 recn A A
2 neg1rr 1
3 2 a1i A 1
4 0red A 0
5 resqcl A A 2
6 neg1lt0 1 < 0
7 6 a1i A 1 < 0
8 sqge0 A 0 A 2
9 3 4 5 7 8 ltletrd A 1 < A 2
10 3 9 gtned A A 2 1
11 atandm3 A dom arctan A A 2 1
12 1 10 11 sylanbrc A A dom arctan