Metamath Proof Explorer


Theorem atanrecl

Description: The arctangent function is real for all real inputs. (Contributed by Mario Carneiro, 31-Mar-2015)

Ref Expression
Assertion atanrecl A arctan A

Proof

Step Hyp Ref Expression
1 simpr A A = 0 A = 0
2 1 fveq2d A A = 0 arctan A = arctan 0
3 atan0 arctan 0 = 0
4 0re 0
5 3 4 eqeltri arctan 0
6 2 5 eqeltrdi A A = 0 arctan A
7 atanre A A dom arctan
8 7 adantr A A 0 A dom arctan
9 atancl A dom arctan arctan A
10 8 9 syl A A 0 arctan A
11 simpl A A 0 A
12 11 recnd A A 0 A
13 rere A A = A
14 13 adantr A A 0 A = A
15 simpr A A 0 A 0
16 14 15 eqnetrd A A 0 A 0
17 atancj A A 0 A dom arctan arctan A = arctan A
18 12 16 17 syl2anc A A 0 A dom arctan arctan A = arctan A
19 18 simprd A A 0 arctan A = arctan A
20 cjre A A = A
21 20 adantr A A 0 A = A
22 21 fveq2d A A 0 arctan A = arctan A
23 19 22 eqtrd A A 0 arctan A = arctan A
24 10 23 cjrebd A A 0 arctan A
25 6 24 pm2.61dane A arctan A