Metamath Proof Explorer


Theorem atansopn

Description: The domain of continuity of the arctangent is an open set. (Contributed by Mario Carneiro, 7-Apr-2015)

Ref Expression
Hypotheses atansopn.d D = −∞ 0
atansopn.s S = y | 1 + y 2 D
Assertion atansopn S TopOpen fld

Proof

Step Hyp Ref Expression
1 atansopn.d D = −∞ 0
2 atansopn.s S = y | 1 + y 2 D
3 eqid y 1 + y 2 = y 1 + y 2
4 3 mptpreima y 1 + y 2 -1 D = y | 1 + y 2 D
5 2 4 eqtr4i S = y 1 + y 2 -1 D
6 eqid TopOpen fld = TopOpen fld
7 6 cnfldtopon TopOpen fld TopOn
8 7 a1i TopOpen fld TopOn
9 1cnd 1
10 8 8 9 cnmptc y 1 TopOpen fld Cn TopOpen fld
11 2nn0 2 0
12 6 expcn 2 0 y y 2 TopOpen fld Cn TopOpen fld
13 11 12 mp1i y y 2 TopOpen fld Cn TopOpen fld
14 6 addcn + TopOpen fld × t TopOpen fld Cn TopOpen fld
15 14 a1i + TopOpen fld × t TopOpen fld Cn TopOpen fld
16 8 10 13 15 cnmpt12f y 1 + y 2 TopOpen fld Cn TopOpen fld
17 16 mptru y 1 + y 2 TopOpen fld Cn TopOpen fld
18 1 logdmopn D TopOpen fld
19 cnima y 1 + y 2 TopOpen fld Cn TopOpen fld D TopOpen fld y 1 + y 2 -1 D TopOpen fld
20 17 18 19 mp2an y 1 + y 2 -1 D TopOpen fld
21 5 20 eqeltri S TopOpen fld