Metamath Proof Explorer


Theorem atantayl

Description: The Taylor series for arctan ( A ) . (Contributed by Mario Carneiro, 1-Apr-2015)

Ref Expression
Hypothesis atantayl.1 F = n i i n i n 2 A n n
Assertion atantayl A A < 1 seq 1 + F arctan A

Proof

Step Hyp Ref Expression
1 atantayl.1 F = n i i n i n 2 A n n
2 nnuz = 1
3 1zzd A A < 1 1
4 ax-icn i
5 halfcl i i 2
6 4 5 mp1i A A < 1 i 2
7 simpl A A < 1 A
8 mulcl i A i A
9 4 7 8 sylancr A A < 1 i A
10 9 negcld A A < 1 i A
11 9 absnegd A A < 1 i A = i A
12 absmul i A i A = i A
13 4 7 12 sylancr A A < 1 i A = i A
14 absi i = 1
15 14 oveq1i i A = 1 A
16 abscl A A
17 16 adantr A A < 1 A
18 17 recnd A A < 1 A
19 18 mulid2d A A < 1 1 A = A
20 15 19 eqtrid A A < 1 i A = A
21 11 13 20 3eqtrd A A < 1 i A = A
22 simpr A A < 1 A < 1
23 21 22 eqbrtrd A A < 1 i A < 1
24 logtayl i A i A < 1 seq 1 + n i A n n log 1 i A
25 10 23 24 syl2anc A A < 1 seq 1 + n i A n n log 1 i A
26 ax-1cn 1
27 subneg 1 i A 1 i A = 1 + i A
28 26 9 27 sylancr A A < 1 1 i A = 1 + i A
29 28 fveq2d A A < 1 log 1 i A = log 1 + i A
30 29 negeqd A A < 1 log 1 i A = log 1 + i A
31 25 30 breqtrd A A < 1 seq 1 + n i A n n log 1 + i A
32 seqex seq 1 + n i A n n i A n n V
33 32 a1i A A < 1 seq 1 + n i A n n i A n n V
34 11 23 eqbrtrrd A A < 1 i A < 1
35 logtayl i A i A < 1 seq 1 + n i A n n log 1 i A
36 9 34 35 syl2anc A A < 1 seq 1 + n i A n n log 1 i A
37 oveq2 n = m i A n = i A m
38 id n = m n = m
39 37 38 oveq12d n = m i A n n = i A m m
40 eqid n i A n n = n i A n n
41 ovex i A m m V
42 39 40 41 fvmpt m n i A n n m = i A m m
43 42 adantl A A < 1 m n i A n n m = i A m m
44 nnnn0 m m 0
45 expcl i A m 0 i A m
46 10 44 45 syl2an A A < 1 m i A m
47 nncn m m
48 47 adantl A A < 1 m m
49 nnne0 m m 0
50 49 adantl A A < 1 m m 0
51 46 48 50 divcld A A < 1 m i A m m
52 43 51 eqeltrd A A < 1 m n i A n n m
53 2 3 52 serf A A < 1 seq 1 + n i A n n :
54 53 ffvelrnda A A < 1 k seq 1 + n i A n n k
55 oveq2 n = m i A n = i A m
56 55 38 oveq12d n = m i A n n = i A m m
57 eqid n i A n n = n i A n n
58 ovex i A m m V
59 56 57 58 fvmpt m n i A n n m = i A m m
60 59 adantl A A < 1 m n i A n n m = i A m m
61 expcl i A m 0 i A m
62 9 44 61 syl2an A A < 1 m i A m
63 62 48 50 divcld A A < 1 m i A m m
64 60 63 eqeltrd A A < 1 m n i A n n m
65 2 3 64 serf A A < 1 seq 1 + n i A n n :
66 65 ffvelrnda A A < 1 k seq 1 + n i A n n k
67 simpr A A < 1 k k
68 67 2 eleqtrdi A A < 1 k k 1
69 simpl A A < 1 k A A < 1
70 elfznn m 1 k m
71 69 70 52 syl2an A A < 1 k m 1 k n i A n n m
72 69 70 64 syl2an A A < 1 k m 1 k n i A n n m
73 39 56 oveq12d n = m i A n n i A n n = i A m m i A m m
74 eqid n i A n n i A n n = n i A n n i A n n
75 ovex i A m m i A m m V
76 73 74 75 fvmpt m n i A n n i A n n m = i A m m i A m m
77 76 adantl A A < 1 m n i A n n i A n n m = i A m m i A m m
78 43 60 oveq12d A A < 1 m n i A n n m n i A n n m = i A m m i A m m
79 77 78 eqtr4d A A < 1 m n i A n n i A n n m = n i A n n m n i A n n m
80 69 70 79 syl2an A A < 1 k m 1 k n i A n n i A n n m = n i A n n m n i A n n m
81 68 71 72 80 sersub A A < 1 k seq 1 + n i A n n i A n n k = seq 1 + n i A n n k seq 1 + n i A n n k
82 2 3 31 33 36 54 66 81 climsub A A < 1 seq 1 + n i A n n i A n n - log 1 + i A - log 1 i A
83 addcl 1 i A 1 + i A
84 26 9 83 sylancr A A < 1 1 + i A
85 bndatandm A A < 1 A dom arctan
86 atandm2 A dom arctan A 1 i A 0 1 + i A 0
87 85 86 sylib A A < 1 A 1 i A 0 1 + i A 0
88 87 simp3d A A < 1 1 + i A 0
89 84 88 logcld A A < 1 log 1 + i A
90 subcl 1 i A 1 i A
91 26 9 90 sylancr A A < 1 1 i A
92 87 simp2d A A < 1 1 i A 0
93 91 92 logcld A A < 1 log 1 i A
94 89 93 neg2subd A A < 1 - log 1 + i A - log 1 i A = log 1 i A log 1 + i A
95 82 94 breqtrd A A < 1 seq 1 + n i A n n i A n n log 1 i A log 1 + i A
96 51 63 subcld A A < 1 m i A m m i A m m
97 77 96 eqeltrd A A < 1 m n i A n n i A n n m
98 4 a1i A A < 1 m i
99 negicn i
100 44 adantl A A < 1 m m 0
101 expcl i m 0 i m
102 99 100 101 sylancr A A < 1 m i m
103 expcl i m 0 i m
104 4 100 103 sylancr A A < 1 m i m
105 102 104 subcld A A < 1 m i m i m
106 2cnd A A < 1 m 2
107 2ne0 2 0
108 107 a1i A A < 1 m 2 0
109 98 105 106 108 div23d A A < 1 m i i m i m 2 = i 2 i m i m
110 109 oveq1d A A < 1 m i i m i m 2 A m m = i 2 i m i m A m m
111 6 adantr A A < 1 m i 2
112 expcl A m 0 A m
113 7 44 112 syl2an A A < 1 m A m
114 113 48 50 divcld A A < 1 m A m m
115 111 105 114 mulassd A A < 1 m i 2 i m i m A m m = i 2 i m i m A m m
116 102 104 113 subdird A A < 1 m i m i m A m = i m A m i m A m
117 7 adantr A A < 1 m A
118 mulneg1 i A i A = i A
119 4 117 118 sylancr A A < 1 m i A = i A
120 119 oveq1d A A < 1 m i A m = i A m
121 99 a1i A A < 1 m i
122 121 117 100 mulexpd A A < 1 m i A m = i m A m
123 120 122 eqtr3d A A < 1 m i A m = i m A m
124 98 117 100 mulexpd A A < 1 m i A m = i m A m
125 123 124 oveq12d A A < 1 m i A m i A m = i m A m i m A m
126 116 125 eqtr4d A A < 1 m i m i m A m = i A m i A m
127 126 oveq1d A A < 1 m i m i m A m m = i A m i A m m
128 105 113 48 50 divassd A A < 1 m i m i m A m m = i m i m A m m
129 46 62 48 50 divsubdird A A < 1 m i A m i A m m = i A m m i A m m
130 127 128 129 3eqtr3d A A < 1 m i m i m A m m = i A m m i A m m
131 130 oveq2d A A < 1 m i 2 i m i m A m m = i 2 i A m m i A m m
132 110 115 131 3eqtrd A A < 1 m i i m i m 2 A m m = i 2 i A m m i A m m
133 oveq2 n = m i n = i m
134 oveq2 n = m i n = i m
135 133 134 oveq12d n = m i n i n = i m i m
136 135 oveq2d n = m i i n i n = i i m i m
137 136 oveq1d n = m i i n i n 2 = i i m i m 2
138 oveq2 n = m A n = A m
139 138 38 oveq12d n = m A n n = A m m
140 137 139 oveq12d n = m i i n i n 2 A n n = i i m i m 2 A m m
141 ovex i i m i m 2 A m m V
142 140 1 141 fvmpt m F m = i i m i m 2 A m m
143 142 adantl A A < 1 m F m = i i m i m 2 A m m
144 77 oveq2d A A < 1 m i 2 n i A n n i A n n m = i 2 i A m m i A m m
145 132 143 144 3eqtr4d A A < 1 m F m = i 2 n i A n n i A n n m
146 2 3 6 95 97 145 isermulc2 A A < 1 seq 1 + F i 2 log 1 i A log 1 + i A
147 atanval A dom arctan arctan A = i 2 log 1 i A log 1 + i A
148 85 147 syl A A < 1 arctan A = i 2 log 1 i A log 1 + i A
149 146 148 breqtrrd A A < 1 seq 1 + F arctan A