| Step |
Hyp |
Ref |
Expression |
| 1 |
|
atantayl3.1 |
|
| 2 |
|
2nn0 |
|
| 3 |
|
simpr |
|
| 4 |
|
nn0mulcl |
|
| 5 |
2 3 4
|
sylancr |
|
| 6 |
5
|
nn0cnd |
|
| 7 |
|
ax-1cn |
|
| 8 |
|
pncan |
|
| 9 |
6 7 8
|
sylancl |
|
| 10 |
9
|
oveq1d |
|
| 11 |
|
nn0cn |
|
| 12 |
11
|
adantl |
|
| 13 |
|
2cnd |
|
| 14 |
|
2ne0 |
|
| 15 |
14
|
a1i |
|
| 16 |
12 13 15
|
divcan3d |
|
| 17 |
10 16
|
eqtr2d |
|
| 18 |
17
|
oveq2d |
|
| 19 |
18
|
oveq1d |
|
| 20 |
19
|
mpteq2dva |
|
| 21 |
1 20
|
eqtrid |
|
| 22 |
21
|
seqeq3d |
|
| 23 |
|
eqid |
|
| 24 |
23
|
atantayl2 |
|
| 25 |
|
neg1cn |
|
| 26 |
|
expcl |
|
| 27 |
25 3 26
|
sylancr |
|
| 28 |
|
simpll |
|
| 29 |
|
peano2nn0 |
|
| 30 |
5 29
|
syl |
|
| 31 |
28 30
|
expcld |
|
| 32 |
|
nn0p1nn |
|
| 33 |
5 32
|
syl |
|
| 34 |
33
|
nncnd |
|
| 35 |
33
|
nnne0d |
|
| 36 |
31 34 35
|
divcld |
|
| 37 |
27 36
|
mulcld |
|
| 38 |
19 37
|
eqeltrrd |
|
| 39 |
|
oveq1 |
|
| 40 |
39
|
oveq1d |
|
| 41 |
40
|
oveq2d |
|
| 42 |
|
oveq2 |
|
| 43 |
|
id |
|
| 44 |
42 43
|
oveq12d |
|
| 45 |
41 44
|
oveq12d |
|
| 46 |
38 45
|
iserodd |
|
| 47 |
24 46
|
mpbird |
|
| 48 |
22 47
|
eqbrtrd |
|