Metamath Proof Explorer


Theorem atanval

Description: Value of the arctan function. (Contributed by Mario Carneiro, 31-Mar-2015)

Ref Expression
Assertion atanval A dom arctan arctan A = i 2 log 1 i A log 1 + i A

Proof

Step Hyp Ref Expression
1 oveq2 x = A i x = i A
2 1 oveq2d x = A 1 i x = 1 i A
3 2 fveq2d x = A log 1 i x = log 1 i A
4 1 oveq2d x = A 1 + i x = 1 + i A
5 4 fveq2d x = A log 1 + i x = log 1 + i A
6 3 5 oveq12d x = A log 1 i x log 1 + i x = log 1 i A log 1 + i A
7 6 oveq2d x = A i 2 log 1 i x log 1 + i x = i 2 log 1 i A log 1 + i A
8 df-atan arctan = x i i i 2 log 1 i x log 1 + i x
9 ovex i 2 log 1 i A log 1 + i A V
10 7 8 9 fvmpt A i i arctan A = i 2 log 1 i A log 1 + i A
11 atanf arctan : i i
12 11 fdmi dom arctan = i i
13 10 12 eleq2s A dom arctan arctan A = i 2 log 1 i A log 1 + i A