Database
BASIC REAL AND COMPLEX FUNCTIONS
Basic trigonometry
Inverse trigonometric functions
atanval
Next ⟩
atanre
Metamath Proof Explorer
Ascii
Unicode
Theorem
atanval
Description:
Value of the arctan function.
(Contributed by
Mario Carneiro
, 31-Mar-2015)
Ref
Expression
Assertion
atanval
⊢
A
∈
dom
⁡
arctan
→
arctan
⁡
A
=
i
2
⁢
log
⁡
1
−
i
⁢
A
−
log
⁡
1
+
i
⁢
A
Proof
Step
Hyp
Ref
Expression
1
oveq2
⊢
x
=
A
→
i
⁢
x
=
i
⁢
A
2
1
oveq2d
⊢
x
=
A
→
1
−
i
⁢
x
=
1
−
i
⁢
A
3
2
fveq2d
⊢
x
=
A
→
log
⁡
1
−
i
⁢
x
=
log
⁡
1
−
i
⁢
A
4
1
oveq2d
⊢
x
=
A
→
1
+
i
⁢
x
=
1
+
i
⁢
A
5
4
fveq2d
⊢
x
=
A
→
log
⁡
1
+
i
⁢
x
=
log
⁡
1
+
i
⁢
A
6
3
5
oveq12d
⊢
x
=
A
→
log
⁡
1
−
i
⁢
x
−
log
⁡
1
+
i
⁢
x
=
log
⁡
1
−
i
⁢
A
−
log
⁡
1
+
i
⁢
A
7
6
oveq2d
⊢
x
=
A
→
i
2
⁢
log
⁡
1
−
i
⁢
x
−
log
⁡
1
+
i
⁢
x
=
i
2
⁢
log
⁡
1
−
i
⁢
A
−
log
⁡
1
+
i
⁢
A
8
df-atan
⊢
arctan
=
x
∈
ℂ
∖
−
i
i
⟼
i
2
⁢
log
⁡
1
−
i
⁢
x
−
log
⁡
1
+
i
⁢
x
9
ovex
⊢
i
2
⁢
log
⁡
1
−
i
⁢
A
−
log
⁡
1
+
i
⁢
A
∈
V
10
7
8
9
fvmpt
⊢
A
∈
ℂ
∖
−
i
i
→
arctan
⁡
A
=
i
2
⁢
log
⁡
1
−
i
⁢
A
−
log
⁡
1
+
i
⁢
A
11
atanf
⊢
arctan
:
ℂ
∖
−
i
i
⟶
ℂ
12
11
fdmi
⊢
dom
⁡
arctan
=
ℂ
∖
−
i
i
13
10
12
eleq2s
⊢
A
∈
dom
⁡
arctan
→
arctan
⁡
A
=
i
2
⁢
log
⁡
1
−
i
⁢
A
−
log
⁡
1
+
i
⁢
A