Metamath Proof Explorer


Theorem atbtwn

Description: Property of a 3rd atom R on a line P .\/ Q intersecting element X at P . (Contributed by NM, 30-Jul-2012)

Ref Expression
Hypotheses atbtwn.b B = Base K
atbtwn.l ˙ = K
atbtwn.j ˙ = join K
atbtwn.a A = Atoms K
Assertion atbtwn K HL P A Q A R A X B P ˙ X ¬ Q ˙ X R ˙ P ˙ Q R P ¬ R ˙ X

Proof

Step Hyp Ref Expression
1 atbtwn.b B = Base K
2 atbtwn.l ˙ = K
3 atbtwn.j ˙ = join K
4 atbtwn.a A = Atoms K
5 simpl33 K HL P A Q A R A X B P ˙ X ¬ Q ˙ X R ˙ P ˙ Q R ˙ X R ˙ P ˙ Q
6 simpr K HL P A Q A R A X B P ˙ X ¬ Q ˙ X R ˙ P ˙ Q R ˙ X R ˙ X
7 simpl11 K HL P A Q A R A X B P ˙ X ¬ Q ˙ X R ˙ P ˙ Q R ˙ X K HL
8 7 hllatd K HL P A Q A R A X B P ˙ X ¬ Q ˙ X R ˙ P ˙ Q R ˙ X K Lat
9 simpl2l K HL P A Q A R A X B P ˙ X ¬ Q ˙ X R ˙ P ˙ Q R ˙ X R A
10 1 4 atbase R A R B
11 9 10 syl K HL P A Q A R A X B P ˙ X ¬ Q ˙ X R ˙ P ˙ Q R ˙ X R B
12 simpl1 K HL P A Q A R A X B P ˙ X ¬ Q ˙ X R ˙ P ˙ Q R ˙ X K HL P A Q A
13 1 3 4 hlatjcl K HL P A Q A P ˙ Q B
14 12 13 syl K HL P A Q A R A X B P ˙ X ¬ Q ˙ X R ˙ P ˙ Q R ˙ X P ˙ Q B
15 simpl2r K HL P A Q A R A X B P ˙ X ¬ Q ˙ X R ˙ P ˙ Q R ˙ X X B
16 eqid meet K = meet K
17 1 2 16 latlem12 K Lat R B P ˙ Q B X B R ˙ P ˙ Q R ˙ X R ˙ P ˙ Q meet K X
18 8 11 14 15 17 syl13anc K HL P A Q A R A X B P ˙ X ¬ Q ˙ X R ˙ P ˙ Q R ˙ X R ˙ P ˙ Q R ˙ X R ˙ P ˙ Q meet K X
19 5 6 18 mpbi2and K HL P A Q A R A X B P ˙ X ¬ Q ˙ X R ˙ P ˙ Q R ˙ X R ˙ P ˙ Q meet K X
20 simpl12 K HL P A Q A R A X B P ˙ X ¬ Q ˙ X R ˙ P ˙ Q R ˙ X P A
21 simpl13 K HL P A Q A R A X B P ˙ X ¬ Q ˙ X R ˙ P ˙ Q R ˙ X Q A
22 simpl31 K HL P A Q A R A X B P ˙ X ¬ Q ˙ X R ˙ P ˙ Q R ˙ X P ˙ X
23 simpl32 K HL P A Q A R A X B P ˙ X ¬ Q ˙ X R ˙ P ˙ Q R ˙ X ¬ Q ˙ X
24 1 2 3 16 4 2atjm K HL P A Q A X B P ˙ X ¬ Q ˙ X P ˙ Q meet K X = P
25 7 20 21 15 22 23 24 syl132anc K HL P A Q A R A X B P ˙ X ¬ Q ˙ X R ˙ P ˙ Q R ˙ X P ˙ Q meet K X = P
26 19 25 breqtrd K HL P A Q A R A X B P ˙ X ¬ Q ˙ X R ˙ P ˙ Q R ˙ X R ˙ P
27 hlatl K HL K AtLat
28 7 27 syl K HL P A Q A R A X B P ˙ X ¬ Q ˙ X R ˙ P ˙ Q R ˙ X K AtLat
29 2 4 atcmp K AtLat R A P A R ˙ P R = P
30 28 9 20 29 syl3anc K HL P A Q A R A X B P ˙ X ¬ Q ˙ X R ˙ P ˙ Q R ˙ X R ˙ P R = P
31 26 30 mpbid K HL P A Q A R A X B P ˙ X ¬ Q ˙ X R ˙ P ˙ Q R ˙ X R = P
32 31 ex K HL P A Q A R A X B P ˙ X ¬ Q ˙ X R ˙ P ˙ Q R ˙ X R = P
33 32 necon3ad K HL P A Q A R A X B P ˙ X ¬ Q ˙ X R ˙ P ˙ Q R P ¬ R ˙ X
34 simp31 K HL P A Q A R A X B P ˙ X ¬ Q ˙ X R ˙ P ˙ Q P ˙ X
35 nbrne2 P ˙ X ¬ R ˙ X P R
36 35 necomd P ˙ X ¬ R ˙ X R P
37 36 ex P ˙ X ¬ R ˙ X R P
38 34 37 syl K HL P A Q A R A X B P ˙ X ¬ Q ˙ X R ˙ P ˙ Q ¬ R ˙ X R P
39 33 38 impbid K HL P A Q A R A X B P ˙ X ¬ Q ˙ X R ˙ P ˙ Q R P ¬ R ˙ X