Metamath Proof Explorer


Theorem atbtwn

Description: Property of a 3rd atom R on a line P .\/ Q intersecting element X at P . (Contributed by NM, 30-Jul-2012)

Ref Expression
Hypotheses atbtwn.b B=BaseK
atbtwn.l ˙=K
atbtwn.j ˙=joinK
atbtwn.a A=AtomsK
Assertion atbtwn KHLPAQARAXBP˙X¬Q˙XR˙P˙QRP¬R˙X

Proof

Step Hyp Ref Expression
1 atbtwn.b B=BaseK
2 atbtwn.l ˙=K
3 atbtwn.j ˙=joinK
4 atbtwn.a A=AtomsK
5 simpl33 KHLPAQARAXBP˙X¬Q˙XR˙P˙QR˙XR˙P˙Q
6 simpr KHLPAQARAXBP˙X¬Q˙XR˙P˙QR˙XR˙X
7 simpl11 KHLPAQARAXBP˙X¬Q˙XR˙P˙QR˙XKHL
8 7 hllatd KHLPAQARAXBP˙X¬Q˙XR˙P˙QR˙XKLat
9 simpl2l KHLPAQARAXBP˙X¬Q˙XR˙P˙QR˙XRA
10 1 4 atbase RARB
11 9 10 syl KHLPAQARAXBP˙X¬Q˙XR˙P˙QR˙XRB
12 simpl1 KHLPAQARAXBP˙X¬Q˙XR˙P˙QR˙XKHLPAQA
13 1 3 4 hlatjcl KHLPAQAP˙QB
14 12 13 syl KHLPAQARAXBP˙X¬Q˙XR˙P˙QR˙XP˙QB
15 simpl2r KHLPAQARAXBP˙X¬Q˙XR˙P˙QR˙XXB
16 eqid meetK=meetK
17 1 2 16 latlem12 KLatRBP˙QBXBR˙P˙QR˙XR˙P˙QmeetKX
18 8 11 14 15 17 syl13anc KHLPAQARAXBP˙X¬Q˙XR˙P˙QR˙XR˙P˙QR˙XR˙P˙QmeetKX
19 5 6 18 mpbi2and KHLPAQARAXBP˙X¬Q˙XR˙P˙QR˙XR˙P˙QmeetKX
20 simpl12 KHLPAQARAXBP˙X¬Q˙XR˙P˙QR˙XPA
21 simpl13 KHLPAQARAXBP˙X¬Q˙XR˙P˙QR˙XQA
22 simpl31 KHLPAQARAXBP˙X¬Q˙XR˙P˙QR˙XP˙X
23 simpl32 KHLPAQARAXBP˙X¬Q˙XR˙P˙QR˙X¬Q˙X
24 1 2 3 16 4 2atjm KHLPAQAXBP˙X¬Q˙XP˙QmeetKX=P
25 7 20 21 15 22 23 24 syl132anc KHLPAQARAXBP˙X¬Q˙XR˙P˙QR˙XP˙QmeetKX=P
26 19 25 breqtrd KHLPAQARAXBP˙X¬Q˙XR˙P˙QR˙XR˙P
27 hlatl KHLKAtLat
28 7 27 syl KHLPAQARAXBP˙X¬Q˙XR˙P˙QR˙XKAtLat
29 2 4 atcmp KAtLatRAPAR˙PR=P
30 28 9 20 29 syl3anc KHLPAQARAXBP˙X¬Q˙XR˙P˙QR˙XR˙PR=P
31 26 30 mpbid KHLPAQARAXBP˙X¬Q˙XR˙P˙QR˙XR=P
32 31 ex KHLPAQARAXBP˙X¬Q˙XR˙P˙QR˙XR=P
33 32 necon3ad KHLPAQARAXBP˙X¬Q˙XR˙P˙QRP¬R˙X
34 simp31 KHLPAQARAXBP˙X¬Q˙XR˙P˙QP˙X
35 nbrne2 P˙X¬R˙XPR
36 35 necomd P˙X¬R˙XRP
37 36 ex P˙X¬R˙XRP
38 34 37 syl KHLPAQARAXBP˙X¬Q˙XR˙P˙Q¬R˙XRP
39 33 38 impbid KHLPAQARAXBP˙X¬Q˙XR˙P˙QRP¬R˙X