Metamath Proof Explorer


Theorem atcmp

Description: If two atoms are comparable, they are equal. ( atsseq analog.) (Contributed by NM, 13-Oct-2011)

Ref Expression
Hypotheses atcmp.l ˙ = K
atcmp.a A = Atoms K
Assertion atcmp K AtLat P A Q A P ˙ Q P = Q

Proof

Step Hyp Ref Expression
1 atcmp.l ˙ = K
2 atcmp.a A = Atoms K
3 atlpos K AtLat K Poset
4 3 3ad2ant1 K AtLat P A Q A K Poset
5 eqid Base K = Base K
6 5 2 atbase P A P Base K
7 6 3ad2ant2 K AtLat P A Q A P Base K
8 5 2 atbase Q A Q Base K
9 8 3ad2ant3 K AtLat P A Q A Q Base K
10 eqid 0. K = 0. K
11 5 10 atl0cl K AtLat 0. K Base K
12 11 3ad2ant1 K AtLat P A Q A 0. K Base K
13 eqid K = K
14 10 13 2 atcvr0 K AtLat P A 0. K K P
15 14 3adant3 K AtLat P A Q A 0. K K P
16 10 13 2 atcvr0 K AtLat Q A 0. K K Q
17 16 3adant2 K AtLat P A Q A 0. K K Q
18 5 1 13 cvrcmp K Poset P Base K Q Base K 0. K Base K 0. K K P 0. K K Q P ˙ Q P = Q
19 4 7 9 12 15 17 18 syl132anc K AtLat P A Q A P ˙ Q P = Q