Metamath Proof Explorer


Theorem atcvat4i

Description: A condition implying existence of an atom with the properties shown. Lemma 3.2.20 of PtakPulmannova p. 68. (Contributed by NM, 2-Jul-2004) (New usage is discouraged.)

Ref Expression
Hypothesis atcvat3.1 AC
Assertion atcvat4i BHAtomsCHAtomsA0BACxHAtomsxABCx

Proof

Step Hyp Ref Expression
1 atcvat3.1 AC
2 1 hatomici A0xHAtomsxA
3 atelch CHAtomsCC
4 atelch xHAtomsxC
5 chub1 CCxCCCx
6 3 4 5 syl2an CHAtomsxHAtomsCCx
7 sseq1 B=CBCxCCx
8 6 7 imbitrrid B=CCHAtomsxHAtomsBCx
9 8 expd B=CCHAtomsxHAtomsBCx
10 9 impcom CHAtomsB=CxHAtomsBCx
11 10 anim2d CHAtomsB=CxAxHAtomsxABCx
12 11 expcomd CHAtomsB=CxHAtomsxAxABCx
13 12 reximdvai CHAtomsB=CxHAtomsxAxHAtomsxABCx
14 2 13 syl5 CHAtomsB=CA0xHAtomsxABCx
15 14 ex CHAtomsB=CA0xHAtomsxABCx
16 15 a1i BACCHAtomsB=CA0xHAtomsxABCx
17 16 com4l CHAtomsB=CA0BACxHAtomsxABCx
18 17 imp4a CHAtomsB=CA0BACxHAtomsxABCx
19 18 adantl BHAtomsCHAtomsB=CA0BACxHAtomsxABCx
20 atelch BHAtomsBC
21 chlejb2 CCACCAAC=A
22 1 21 mpan2 CCCAAC=A
23 22 biimpa CCCAAC=A
24 23 sseq2d CCCABACBA
25 24 biimpa CCCABACBA
26 25 expl CCCABACBA
27 26 adantl BCCCCABACBA
28 chub2 BCCCBCB
29 27 28 jctird BCCCCABACBABCB
30 20 3 29 syl2an BHAtomsCHAtomsCABACBABCB
31 simpl BHAtomsCHAtomsBHAtoms
32 30 31 jctild BHAtomsCHAtomsCABACBHAtomsBABCB
33 32 impl BHAtomsCHAtomsCABACBHAtomsBABCB
34 sseq1 x=BxABA
35 oveq2 x=BCx=CB
36 35 sseq2d x=BBCxBCB
37 34 36 anbi12d x=BxABCxBABCB
38 37 rspcev BHAtomsBABCBxHAtomsxABCx
39 33 38 syl BHAtomsCHAtomsCABACxHAtomsxABCx
40 39 adantrl BHAtomsCHAtomsCAA0BACxHAtomsxABCx
41 40 exp31 BHAtomsCHAtomsCAA0BACxHAtomsxABCx
42 simpr A0BACBAC
43 ioran ¬B=CCA¬B=C¬CA
44 1 atcvat3i BHAtomsCHAtoms¬B=C¬CABACABCHAtoms
45 3 ad2antlr BHAtomsCHAtoms¬B=C¬CABACCC
46 44 imp BHAtomsCHAtoms¬B=C¬CABACABCHAtoms
47 simpll BHAtomsCHAtoms¬B=C¬CABACBHAtoms
48 45 46 47 3jca BHAtomsCHAtoms¬B=C¬CABACCCABCHAtomsBHAtoms
49 inss2 ABCBC
50 chjcom BCCCBC=CB
51 20 3 50 syl2an BHAtomsCHAtomsBC=CB
52 49 51 sseqtrid BHAtomsCHAtomsABCCB
53 52 adantr BHAtomsCHAtoms¬B=C¬CABACABCCB
54 atnssm0 ACCHAtoms¬CAAC=0
55 1 54 mpan CHAtoms¬CAAC=0
56 55 adantl BHAtomsCHAtoms¬CAAC=0
57 inss1 ABCA
58 sslin ABCACABCCA
59 57 58 ax-mp CABCCA
60 incom CA=AC
61 59 60 sseqtri CABCAC
62 sseq2 AC=0CABCACCABC0
63 61 62 mpbii AC=0CABC0
64 simpr BCCCCC
65 chjcl BCCCBCC
66 chincl ACBCCABCC
67 1 65 66 sylancr BCCCABCC
68 chincl CCABCCCABCC
69 64 67 68 syl2anc BCCCCABCC
70 20 3 69 syl2an BHAtomsCHAtomsCABCC
71 chle0 CABCCCABC0CABC=0
72 70 71 syl BHAtomsCHAtomsCABC0CABC=0
73 63 72 imbitrid BHAtomsCHAtomsAC=0CABC=0
74 56 73 sylbid BHAtomsCHAtoms¬CACABC=0
75 74 imp BHAtomsCHAtoms¬CACABC=0
76 75 adantrl BHAtomsCHAtoms¬B=C¬CACABC=0
77 76 adantrr BHAtomsCHAtoms¬B=C¬CABACCABC=0
78 53 77 jca BHAtomsCHAtoms¬B=C¬CABACABCCBCABC=0
79 atexch CCABCHAtomsBHAtomsABCCBCABC=0BCABC
80 48 78 79 sylc BHAtomsCHAtoms¬B=C¬CABACBCABC
81 80 57 jctil BHAtomsCHAtoms¬B=C¬CABACABCABCABC
82 81 ex BHAtomsCHAtoms¬B=C¬CABACABCABCABC
83 44 82 jcad BHAtomsCHAtoms¬B=C¬CABACABCHAtomsABCABCABC
84 sseq1 x=ABCxAABCA
85 oveq2 x=ABCCx=CABC
86 85 sseq2d x=ABCBCxBCABC
87 84 86 anbi12d x=ABCxABCxABCABCABC
88 87 rspcev ABCHAtomsABCABCABCxHAtomsxABCx
89 83 88 syl6 BHAtomsCHAtoms¬B=C¬CABACxHAtomsxABCx
90 89 expd BHAtomsCHAtoms¬B=C¬CABACxHAtomsxABCx
91 43 90 biimtrid BHAtomsCHAtoms¬B=CCABACxHAtomsxABCx
92 42 91 syl7 BHAtomsCHAtoms¬B=CCAA0BACxHAtomsxABCx
93 19 41 92 ecase3d BHAtomsCHAtomsA0BACxHAtomsxABCx