Metamath Proof Explorer


Theorem atcvat4i

Description: A condition implying existence of an atom with the properties shown. Lemma 3.2.20 of PtakPulmannova p. 68. (Contributed by NM, 2-Jul-2004) (New usage is discouraged.)

Ref Expression
Hypothesis atcvat3.1 A C
Assertion atcvat4i B HAtoms C HAtoms A 0 B A C x HAtoms x A B C x

Proof

Step Hyp Ref Expression
1 atcvat3.1 A C
2 1 hatomici A 0 x HAtoms x A
3 atelch C HAtoms C C
4 atelch x HAtoms x C
5 chub1 C C x C C C x
6 3 4 5 syl2an C HAtoms x HAtoms C C x
7 sseq1 B = C B C x C C x
8 6 7 syl5ibr B = C C HAtoms x HAtoms B C x
9 8 expd B = C C HAtoms x HAtoms B C x
10 9 impcom C HAtoms B = C x HAtoms B C x
11 10 anim2d C HAtoms B = C x A x HAtoms x A B C x
12 11 expcomd C HAtoms B = C x HAtoms x A x A B C x
13 12 reximdvai C HAtoms B = C x HAtoms x A x HAtoms x A B C x
14 2 13 syl5 C HAtoms B = C A 0 x HAtoms x A B C x
15 14 ex C HAtoms B = C A 0 x HAtoms x A B C x
16 15 a1i B A C C HAtoms B = C A 0 x HAtoms x A B C x
17 16 com4l C HAtoms B = C A 0 B A C x HAtoms x A B C x
18 17 imp4a C HAtoms B = C A 0 B A C x HAtoms x A B C x
19 18 adantl B HAtoms C HAtoms B = C A 0 B A C x HAtoms x A B C x
20 atelch B HAtoms B C
21 chlejb2 C C A C C A A C = A
22 1 21 mpan2 C C C A A C = A
23 22 biimpa C C C A A C = A
24 23 sseq2d C C C A B A C B A
25 24 biimpa C C C A B A C B A
26 25 expl C C C A B A C B A
27 26 adantl B C C C C A B A C B A
28 chub2 B C C C B C B
29 27 28 jctird B C C C C A B A C B A B C B
30 20 3 29 syl2an B HAtoms C HAtoms C A B A C B A B C B
31 simpl B HAtoms C HAtoms B HAtoms
32 30 31 jctild B HAtoms C HAtoms C A B A C B HAtoms B A B C B
33 32 impl B HAtoms C HAtoms C A B A C B HAtoms B A B C B
34 sseq1 x = B x A B A
35 oveq2 x = B C x = C B
36 35 sseq2d x = B B C x B C B
37 34 36 anbi12d x = B x A B C x B A B C B
38 37 rspcev B HAtoms B A B C B x HAtoms x A B C x
39 33 38 syl B HAtoms C HAtoms C A B A C x HAtoms x A B C x
40 39 adantrl B HAtoms C HAtoms C A A 0 B A C x HAtoms x A B C x
41 40 exp31 B HAtoms C HAtoms C A A 0 B A C x HAtoms x A B C x
42 simpr A 0 B A C B A C
43 ioran ¬ B = C C A ¬ B = C ¬ C A
44 1 atcvat3i B HAtoms C HAtoms ¬ B = C ¬ C A B A C A B C HAtoms
45 3 ad2antlr B HAtoms C HAtoms ¬ B = C ¬ C A B A C C C
46 44 imp B HAtoms C HAtoms ¬ B = C ¬ C A B A C A B C HAtoms
47 simpll B HAtoms C HAtoms ¬ B = C ¬ C A B A C B HAtoms
48 45 46 47 3jca B HAtoms C HAtoms ¬ B = C ¬ C A B A C C C A B C HAtoms B HAtoms
49 inss2 A B C B C
50 chjcom B C C C B C = C B
51 20 3 50 syl2an B HAtoms C HAtoms B C = C B
52 49 51 sseqtrid B HAtoms C HAtoms A B C C B
53 52 adantr B HAtoms C HAtoms ¬ B = C ¬ C A B A C A B C C B
54 atnssm0 A C C HAtoms ¬ C A A C = 0
55 1 54 mpan C HAtoms ¬ C A A C = 0
56 55 adantl B HAtoms C HAtoms ¬ C A A C = 0
57 inss1 A B C A
58 sslin A B C A C A B C C A
59 57 58 ax-mp C A B C C A
60 incom C A = A C
61 59 60 sseqtri C A B C A C
62 sseq2 A C = 0 C A B C A C C A B C 0
63 61 62 mpbii A C = 0 C A B C 0
64 simpr B C C C C C
65 chjcl B C C C B C C
66 chincl A C B C C A B C C
67 1 65 66 sylancr B C C C A B C C
68 chincl C C A B C C C A B C C
69 64 67 68 syl2anc B C C C C A B C C
70 20 3 69 syl2an B HAtoms C HAtoms C A B C C
71 chle0 C A B C C C A B C 0 C A B C = 0
72 70 71 syl B HAtoms C HAtoms C A B C 0 C A B C = 0
73 63 72 syl5ib B HAtoms C HAtoms A C = 0 C A B C = 0
74 56 73 sylbid B HAtoms C HAtoms ¬ C A C A B C = 0
75 74 imp B HAtoms C HAtoms ¬ C A C A B C = 0
76 75 adantrl B HAtoms C HAtoms ¬ B = C ¬ C A C A B C = 0
77 76 adantrr B HAtoms C HAtoms ¬ B = C ¬ C A B A C C A B C = 0
78 53 77 jca B HAtoms C HAtoms ¬ B = C ¬ C A B A C A B C C B C A B C = 0
79 atexch C C A B C HAtoms B HAtoms A B C C B C A B C = 0 B C A B C
80 48 78 79 sylc B HAtoms C HAtoms ¬ B = C ¬ C A B A C B C A B C
81 80 57 jctil B HAtoms C HAtoms ¬ B = C ¬ C A B A C A B C A B C A B C
82 81 ex B HAtoms C HAtoms ¬ B = C ¬ C A B A C A B C A B C A B C
83 44 82 jcad B HAtoms C HAtoms ¬ B = C ¬ C A B A C A B C HAtoms A B C A B C A B C
84 sseq1 x = A B C x A A B C A
85 oveq2 x = A B C C x = C A B C
86 85 sseq2d x = A B C B C x B C A B C
87 84 86 anbi12d x = A B C x A B C x A B C A B C A B C
88 87 rspcev A B C HAtoms A B C A B C A B C x HAtoms x A B C x
89 83 88 syl6 B HAtoms C HAtoms ¬ B = C ¬ C A B A C x HAtoms x A B C x
90 89 expd B HAtoms C HAtoms ¬ B = C ¬ C A B A C x HAtoms x A B C x
91 43 90 syl5bi B HAtoms C HAtoms ¬ B = C C A B A C x HAtoms x A B C x
92 42 91 syl7 B HAtoms C HAtoms ¬ B = C C A A 0 B A C x HAtoms x A B C x
93 19 41 92 ecase3d B HAtoms C HAtoms A 0 B A C x HAtoms x A B C x