Step |
Hyp |
Ref |
Expression |
1 |
|
atcvat3.1 |
|
2 |
1
|
hatomici |
|
3 |
|
atelch |
|
4 |
|
atelch |
|
5 |
|
chub1 |
|
6 |
3 4 5
|
syl2an |
|
7 |
|
sseq1 |
|
8 |
6 7
|
syl5ibr |
|
9 |
8
|
expd |
|
10 |
9
|
impcom |
|
11 |
10
|
anim2d |
|
12 |
11
|
expcomd |
|
13 |
12
|
reximdvai |
|
14 |
2 13
|
syl5 |
|
15 |
14
|
ex |
|
16 |
15
|
a1i |
|
17 |
16
|
com4l |
|
18 |
17
|
imp4a |
|
19 |
18
|
adantl |
|
20 |
|
atelch |
|
21 |
|
chlejb2 |
|
22 |
1 21
|
mpan2 |
|
23 |
22
|
biimpa |
|
24 |
23
|
sseq2d |
|
25 |
24
|
biimpa |
|
26 |
25
|
expl |
|
27 |
26
|
adantl |
|
28 |
|
chub2 |
|
29 |
27 28
|
jctird |
|
30 |
20 3 29
|
syl2an |
|
31 |
|
simpl |
|
32 |
30 31
|
jctild |
|
33 |
32
|
impl |
|
34 |
|
sseq1 |
|
35 |
|
oveq2 |
|
36 |
35
|
sseq2d |
|
37 |
34 36
|
anbi12d |
|
38 |
37
|
rspcev |
|
39 |
33 38
|
syl |
|
40 |
39
|
adantrl |
|
41 |
40
|
exp31 |
|
42 |
|
simpr |
|
43 |
|
ioran |
|
44 |
1
|
atcvat3i |
|
45 |
3
|
ad2antlr |
|
46 |
44
|
imp |
|
47 |
|
simpll |
|
48 |
45 46 47
|
3jca |
|
49 |
|
inss2 |
|
50 |
|
chjcom |
|
51 |
20 3 50
|
syl2an |
|
52 |
49 51
|
sseqtrid |
|
53 |
52
|
adantr |
|
54 |
|
atnssm0 |
|
55 |
1 54
|
mpan |
|
56 |
55
|
adantl |
|
57 |
|
inss1 |
|
58 |
|
sslin |
|
59 |
57 58
|
ax-mp |
|
60 |
|
incom |
|
61 |
59 60
|
sseqtri |
|
62 |
|
sseq2 |
|
63 |
61 62
|
mpbii |
|
64 |
|
simpr |
|
65 |
|
chjcl |
|
66 |
|
chincl |
|
67 |
1 65 66
|
sylancr |
|
68 |
|
chincl |
|
69 |
64 67 68
|
syl2anc |
|
70 |
20 3 69
|
syl2an |
|
71 |
|
chle0 |
|
72 |
70 71
|
syl |
|
73 |
63 72
|
syl5ib |
|
74 |
56 73
|
sylbid |
|
75 |
74
|
imp |
|
76 |
75
|
adantrl |
|
77 |
76
|
adantrr |
|
78 |
53 77
|
jca |
|
79 |
|
atexch |
|
80 |
48 78 79
|
sylc |
|
81 |
80 57
|
jctil |
|
82 |
81
|
ex |
|
83 |
44 82
|
jcad |
|
84 |
|
sseq1 |
|
85 |
|
oveq2 |
|
86 |
85
|
sseq2d |
|
87 |
84 86
|
anbi12d |
|
88 |
87
|
rspcev |
|
89 |
83 88
|
syl6 |
|
90 |
89
|
expd |
|
91 |
43 90
|
syl5bi |
|
92 |
42 91
|
syl7 |
|
93 |
19 41 92
|
ecase3d |
|