Metamath Proof Explorer


Theorem atcvati

Description: A nonzero Hilbert lattice element less than the join of two atoms is an atom. (Contributed by NM, 28-Jun-2004) (New usage is discouraged.)

Ref Expression
Hypothesis atoml.1 A C
Assertion atcvati B HAtoms C HAtoms A 0 A B C A HAtoms

Proof

Step Hyp Ref Expression
1 atoml.1 A C
2 1 atcvatlem B HAtoms C HAtoms A 0 A B C ¬ B A A HAtoms
3 atelch C HAtoms C C
4 atelch B HAtoms B C
5 chjcom C C B C C B = B C
6 3 4 5 syl2an C HAtoms B HAtoms C B = B C
7 6 psseq2d C HAtoms B HAtoms A C B A B C
8 7 anbi2d C HAtoms B HAtoms A 0 A C B A 0 A B C
9 1 atcvatlem C HAtoms B HAtoms A 0 A C B ¬ C A A HAtoms
10 9 ex C HAtoms B HAtoms A 0 A C B ¬ C A A HAtoms
11 8 10 sylbird C HAtoms B HAtoms A 0 A B C ¬ C A A HAtoms
12 11 ancoms B HAtoms C HAtoms A 0 A B C ¬ C A A HAtoms
13 12 imp B HAtoms C HAtoms A 0 A B C ¬ C A A HAtoms
14 chlub B C C C A C B A C A B C A
15 14 3comr A C B C C C B A C A B C A
16 ssnpss B C A ¬ A B C
17 15 16 syl6bi A C B C C C B A C A ¬ A B C
18 17 con2d A C B C C C A B C ¬ B A C A
19 ianor ¬ B A C A ¬ B A ¬ C A
20 18 19 syl6ib A C B C C C A B C ¬ B A ¬ C A
21 1 20 mp3an1 B C C C A B C ¬ B A ¬ C A
22 4 3 21 syl2an B HAtoms C HAtoms A B C ¬ B A ¬ C A
23 22 imp B HAtoms C HAtoms A B C ¬ B A ¬ C A
24 23 adantrl B HAtoms C HAtoms A 0 A B C ¬ B A ¬ C A
25 2 13 24 mpjaod B HAtoms C HAtoms A 0 A B C A HAtoms
26 25 ex B HAtoms C HAtoms A 0 A B C A HAtoms