Metamath Proof Explorer


Theorem atcveq0

Description: A Hilbert lattice element covered by an atom must be the zero subspace. (Contributed by NM, 11-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion atcveq0 A C B HAtoms A B A = 0

Proof

Step Hyp Ref Expression
1 atelch B HAtoms B C
2 cvpss A C B C A B A B
3 1 2 sylan2 A C B HAtoms A B A B
4 ch0le A C 0 A
5 4 adantr A C B HAtoms 0 A
6 3 5 jctild A C B HAtoms A B 0 A A B
7 atcv0 B HAtoms 0 B
8 7 adantr B HAtoms A C 0 B
9 h0elch 0 C
10 cvnbtwn3 0 C B C A C 0 B 0 A A B A = 0
11 9 10 mp3an1 B C A C 0 B 0 A A B A = 0
12 1 11 sylan B HAtoms A C 0 B 0 A A B A = 0
13 8 12 mpd B HAtoms A C 0 A A B A = 0
14 13 ancoms A C B HAtoms 0 A A B A = 0
15 6 14 syld A C B HAtoms A B A = 0
16 breq1 A = 0 A B 0 B
17 7 16 syl5ibrcom B HAtoms A = 0 A B
18 17 adantl A C B HAtoms A = 0 A B
19 15 18 impbid A C B HAtoms A B A = 0