Metamath Proof Explorer


Theorem atcvr0

Description: An atom covers zero. ( atcv0 analog.) (Contributed by NM, 4-Nov-2011)

Ref Expression
Hypotheses atomcvr0.z 0 ˙ = 0. K
atomcvr0.c C = K
atomcvr0.a A = Atoms K
Assertion atcvr0 K D P A 0 ˙ C P

Proof

Step Hyp Ref Expression
1 atomcvr0.z 0 ˙ = 0. K
2 atomcvr0.c C = K
3 atomcvr0.a A = Atoms K
4 eqid Base K = Base K
5 4 1 2 3 isat K D P A P Base K 0 ˙ C P
6 5 simplbda K D P A 0 ˙ C P