| Step | Hyp | Ref | Expression | 
						
							| 1 |  | atcvr0eq.j |  | 
						
							| 2 |  | atcvr0eq.z |  | 
						
							| 3 |  | atcvr0eq.c |  | 
						
							| 4 |  | atcvr0eq.a |  | 
						
							| 5 | 1 3 4 | atcvr1 |  | 
						
							| 6 | 2 3 4 | atcvr0 |  | 
						
							| 7 | 6 | 3adant3 |  | 
						
							| 8 | 7 | biantrurd |  | 
						
							| 9 | 5 8 | bitrd |  | 
						
							| 10 |  | simp1 |  | 
						
							| 11 |  | hlop |  | 
						
							| 12 | 11 | 3ad2ant1 |  | 
						
							| 13 |  | eqid |  | 
						
							| 14 | 13 2 | op0cl |  | 
						
							| 15 | 12 14 | syl |  | 
						
							| 16 | 13 4 | atbase |  | 
						
							| 17 | 16 | 3ad2ant2 |  | 
						
							| 18 | 13 1 4 | hlatjcl |  | 
						
							| 19 | 13 3 | cvrntr |  | 
						
							| 20 | 10 15 17 18 19 | syl13anc |  | 
						
							| 21 | 9 20 | sylbid |  | 
						
							| 22 | 21 | necon4ad |  | 
						
							| 23 | 1 4 | hlatjidm |  | 
						
							| 24 | 23 | 3adant3 |  | 
						
							| 25 | 7 24 | breqtrrd |  | 
						
							| 26 |  | oveq2 |  | 
						
							| 27 | 26 | breq2d |  | 
						
							| 28 | 25 27 | syl5ibcom |  | 
						
							| 29 | 22 28 | impbid |  |