Metamath Proof Explorer


Theorem atcvrj1

Description: Condition for an atom to be covered by the join of two others. (Contributed by NM, 7-Feb-2012)

Ref Expression
Hypotheses atcvrj1x.l ˙ = K
atcvrj1x.j ˙ = join K
atcvrj1x.c C = K
atcvrj1x.a A = Atoms K
Assertion atcvrj1 K HL P A Q A R A P R P ˙ Q ˙ R P C Q ˙ R

Proof

Step Hyp Ref Expression
1 atcvrj1x.l ˙ = K
2 atcvrj1x.j ˙ = join K
3 atcvrj1x.c C = K
4 atcvrj1x.a A = Atoms K
5 simp3l K HL P A Q A R A P R P ˙ Q ˙ R P R
6 hlatl K HL K AtLat
7 6 3ad2ant1 K HL P A Q A R A P R P ˙ Q ˙ R K AtLat
8 simp21 K HL P A Q A R A P R P ˙ Q ˙ R P A
9 simp23 K HL P A Q A R A P R P ˙ Q ˙ R R A
10 eqid meet K = meet K
11 eqid 0. K = 0. K
12 10 11 4 atnem0 K AtLat P A R A P R P meet K R = 0. K
13 7 8 9 12 syl3anc K HL P A Q A R A P R P ˙ Q ˙ R P R P meet K R = 0. K
14 5 13 mpbid K HL P A Q A R A P R P ˙ Q ˙ R P meet K R = 0. K
15 simp1 K HL P A Q A R A P R P ˙ Q ˙ R K HL
16 eqid Base K = Base K
17 16 4 atbase P A P Base K
18 8 17 syl K HL P A Q A R A P R P ˙ Q ˙ R P Base K
19 16 2 10 11 3 4 cvrp K HL P Base K R A P meet K R = 0. K P C P ˙ R
20 15 18 9 19 syl3anc K HL P A Q A R A P R P ˙ Q ˙ R P meet K R = 0. K P C P ˙ R
21 14 20 mpbid K HL P A Q A R A P R P ˙ Q ˙ R P C P ˙ R
22 simp3r K HL P A Q A R A P R P ˙ Q ˙ R P ˙ Q ˙ R
23 1 2 4 hlatexchb2 K HL P A Q A R A P R P ˙ Q ˙ R P ˙ R = Q ˙ R
24 23 3adant3r K HL P A Q A R A P R P ˙ Q ˙ R P ˙ Q ˙ R P ˙ R = Q ˙ R
25 22 24 mpbid K HL P A Q A R A P R P ˙ Q ˙ R P ˙ R = Q ˙ R
26 21 25 breqtrd K HL P A Q A R A P R P ˙ Q ˙ R P C Q ˙ R