Metamath Proof Explorer


Theorem atcvrj2b

Description: Condition for an atom to be covered by the join of two others. (Contributed by NM, 7-Feb-2012)

Ref Expression
Hypotheses atcvrj1x.l ˙ = K
atcvrj1x.j ˙ = join K
atcvrj1x.c C = K
atcvrj1x.a A = Atoms K
Assertion atcvrj2b K HL P A Q A R A Q R P ˙ Q ˙ R P C Q ˙ R

Proof

Step Hyp Ref Expression
1 atcvrj1x.l ˙ = K
2 atcvrj1x.j ˙ = join K
3 atcvrj1x.c C = K
4 atcvrj1x.a A = Atoms K
5 simpl3l K HL P A Q A R A Q R P ˙ Q ˙ R P = R Q R
6 5 necomd K HL P A Q A R A Q R P ˙ Q ˙ R P = R R Q
7 simpl1 K HL P A Q A R A Q R P ˙ Q ˙ R P = R K HL
8 simpl23 K HL P A Q A R A Q R P ˙ Q ˙ R P = R R A
9 simpl22 K HL P A Q A R A Q R P ˙ Q ˙ R P = R Q A
10 2 3 4 atcvr2 K HL R A Q A R Q R C Q ˙ R
11 7 8 9 10 syl3anc K HL P A Q A R A Q R P ˙ Q ˙ R P = R R Q R C Q ˙ R
12 6 11 mpbid K HL P A Q A R A Q R P ˙ Q ˙ R P = R R C Q ˙ R
13 breq1 P = R P C Q ˙ R R C Q ˙ R
14 13 adantl K HL P A Q A R A Q R P ˙ Q ˙ R P = R P C Q ˙ R R C Q ˙ R
15 12 14 mpbird K HL P A Q A R A Q R P ˙ Q ˙ R P = R P C Q ˙ R
16 simpl1 K HL P A Q A R A Q R P ˙ Q ˙ R P R K HL
17 simpl2 K HL P A Q A R A Q R P ˙ Q ˙ R P R P A Q A R A
18 simpr K HL P A Q A R A Q R P ˙ Q ˙ R P R P R
19 simpl3r K HL P A Q A R A Q R P ˙ Q ˙ R P R P ˙ Q ˙ R
20 1 2 3 4 atcvrj1 K HL P A Q A R A P R P ˙ Q ˙ R P C Q ˙ R
21 16 17 18 19 20 syl112anc K HL P A Q A R A Q R P ˙ Q ˙ R P R P C Q ˙ R
22 15 21 pm2.61dane K HL P A Q A R A Q R P ˙ Q ˙ R P C Q ˙ R
23 22 3expia K HL P A Q A R A Q R P ˙ Q ˙ R P C Q ˙ R
24 hlatl K HL K AtLat
25 24 ad2antrr K HL P A Q A R A P C Q ˙ R K AtLat
26 simplr1 K HL P A Q A R A P C Q ˙ R P A
27 eqid 0. K = 0. K
28 27 4 atn0 K AtLat P A P 0. K
29 25 26 28 syl2anc K HL P A Q A R A P C Q ˙ R P 0. K
30 simpll K HL P A Q A R A P C Q ˙ R K HL
31 eqid Base K = Base K
32 31 4 atbase P A P Base K
33 26 32 syl K HL P A Q A R A P C Q ˙ R P Base K
34 simplr2 K HL P A Q A R A P C Q ˙ R Q A
35 simplr3 K HL P A Q A R A P C Q ˙ R R A
36 simpr K HL P A Q A R A P C Q ˙ R P C Q ˙ R
37 31 2 27 3 4 atcvrj0 K HL P Base K Q A R A P C Q ˙ R P = 0. K Q = R
38 30 33 34 35 36 37 syl131anc K HL P A Q A R A P C Q ˙ R P = 0. K Q = R
39 38 necon3bid K HL P A Q A R A P C Q ˙ R P 0. K Q R
40 29 39 mpbid K HL P A Q A R A P C Q ˙ R Q R
41 hllat K HL K Lat
42 41 ad2antrr K HL P A Q A R A P C Q ˙ R K Lat
43 31 4 atbase Q A Q Base K
44 34 43 syl K HL P A Q A R A P C Q ˙ R Q Base K
45 31 4 atbase R A R Base K
46 35 45 syl K HL P A Q A R A P C Q ˙ R R Base K
47 31 2 latjcl K Lat Q Base K R Base K Q ˙ R Base K
48 42 44 46 47 syl3anc K HL P A Q A R A P C Q ˙ R Q ˙ R Base K
49 30 33 48 3jca K HL P A Q A R A P C Q ˙ R K HL P Base K Q ˙ R Base K
50 31 1 3 cvrle K HL P Base K Q ˙ R Base K P C Q ˙ R P ˙ Q ˙ R
51 49 50 sylancom K HL P A Q A R A P C Q ˙ R P ˙ Q ˙ R
52 40 51 jca K HL P A Q A R A P C Q ˙ R Q R P ˙ Q ˙ R
53 52 ex K HL P A Q A R A P C Q ˙ R Q R P ˙ Q ˙ R
54 23 53 impbid K HL P A Q A R A Q R P ˙ Q ˙ R P C Q ˙ R