Metamath Proof Explorer


Theorem atcvrneN

Description: Inequality derived from atom condition. (Contributed by NM, 7-Feb-2012) (New usage is discouraged.)

Ref Expression
Hypotheses atcvrne.j ˙ = join K
atcvrne.c C = K
atcvrne.a A = Atoms K
Assertion atcvrneN K HL P A Q A R A P C Q ˙ R Q R

Proof

Step Hyp Ref Expression
1 atcvrne.j ˙ = join K
2 atcvrne.c C = K
3 atcvrne.a A = Atoms K
4 hlatl K HL K AtLat
5 4 3ad2ant1 K HL P A Q A R A P C Q ˙ R K AtLat
6 simp21 K HL P A Q A R A P C Q ˙ R P A
7 eqid 0. K = 0. K
8 7 3 atn0 K AtLat P A P 0. K
9 5 6 8 syl2anc K HL P A Q A R A P C Q ˙ R P 0. K
10 simp1 K HL P A Q A R A P C Q ˙ R K HL
11 eqid Base K = Base K
12 11 3 atbase P A P Base K
13 6 12 syl K HL P A Q A R A P C Q ˙ R P Base K
14 simp22 K HL P A Q A R A P C Q ˙ R Q A
15 simp23 K HL P A Q A R A P C Q ˙ R R A
16 simp3 K HL P A Q A R A P C Q ˙ R P C Q ˙ R
17 11 1 7 2 3 atcvrj0 K HL P Base K Q A R A P C Q ˙ R P = 0. K Q = R
18 10 13 14 15 16 17 syl131anc K HL P A Q A R A P C Q ˙ R P = 0. K Q = R
19 18 necon3bid K HL P A Q A R A P C Q ˙ R P 0. K Q R
20 9 19 mpbid K HL P A Q A R A P C Q ˙ R Q R