Metamath Proof Explorer


Theorem atdmd

Description: Two Hilbert lattice elements have the dual modular pair property if the first is an atom. Theorem 7.6(c) of MaedaMaeda p. 31. (Contributed by NM, 22-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion atdmd A HAtoms B C A 𝑀 * B

Proof

Step Hyp Ref Expression
1 cvp B C A HAtoms B A = 0 B B A
2 atelch A HAtoms A C
3 chjcom B C A C B A = A B
4 2 3 sylan2 B C A HAtoms B A = A B
5 4 breq2d B C A HAtoms B B A B A B
6 1 5 bitrd B C A HAtoms B A = 0 B A B
7 6 ancoms A HAtoms B C B A = 0 B A B
8 cvdmd A C B C B A B A 𝑀 * B
9 8 3expia A C B C B A B A 𝑀 * B
10 2 9 sylan A HAtoms B C B A B A 𝑀 * B
11 7 10 sylbid A HAtoms B C B A = 0 A 𝑀 * B
12 atnssm0 B C A HAtoms ¬ A B B A = 0
13 12 ancoms A HAtoms B C ¬ A B B A = 0
14 13 con1bid A HAtoms B C ¬ B A = 0 A B
15 ssdmd1 A C B C A B A 𝑀 * B
16 15 3expia A C B C A B A 𝑀 * B
17 2 16 sylan A HAtoms B C A B A 𝑀 * B
18 14 17 sylbid A HAtoms B C ¬ B A = 0 A 𝑀 * B
19 11 18 pm2.61d A HAtoms B C A 𝑀 * B