Metamath Proof Explorer


Theorem atl0cl

Description: An atomic lattice has a zero element. We can use this in place of op0cl for lattices without orthocomplements. (Contributed by NM, 5-Nov-2012)

Ref Expression
Hypotheses atl0cl.b B = Base K
atl0cl.z 0 ˙ = 0. K
Assertion atl0cl K AtLat 0 ˙ B

Proof

Step Hyp Ref Expression
1 atl0cl.b B = Base K
2 atl0cl.z 0 ˙ = 0. K
3 eqid glb K = glb K
4 1 3 2 p0val K AtLat 0 ˙ = glb K B
5 id K AtLat K AtLat
6 eqid lub K = lub K
7 1 6 3 atl0dm K AtLat B dom glb K
8 1 3 5 7 glbcl K AtLat glb K B B
9 4 8 eqeltrd K AtLat 0 ˙ B