Metamath Proof Explorer


Theorem atl0dm

Description: Condition necessary for zero element to exist. (Contributed by NM, 14-Sep-2018)

Ref Expression
Hypotheses atl01dm.b B = Base K
atl01dm.u U = lub K
atl01dm.g G = glb K
Assertion atl0dm K AtLat B dom G

Proof

Step Hyp Ref Expression
1 atl01dm.b B = Base K
2 atl01dm.u U = lub K
3 atl01dm.g G = glb K
4 eqid K = K
5 eqid 0. K = 0. K
6 eqid Atoms K = Atoms K
7 1 3 4 5 6 isatl K AtLat K Lat B dom G x B x 0. K y Atoms K y K x
8 7 simp2bi K AtLat B dom G