Metamath Proof Explorer


Theorem atl0le

Description: Orthoposet zero is less than or equal to any element. ( ch0le analog.) (Contributed by NM, 12-Oct-2011)

Ref Expression
Hypotheses atl0le.b B = Base K
atl0le.l ˙ = K
atl0le.z 0 ˙ = 0. K
Assertion atl0le K AtLat X B 0 ˙ ˙ X

Proof

Step Hyp Ref Expression
1 atl0le.b B = Base K
2 atl0le.l ˙ = K
3 atl0le.z 0 ˙ = 0. K
4 eqid glb K = glb K
5 simpl K AtLat X B K AtLat
6 simpr K AtLat X B X B
7 eqid lub K = lub K
8 1 7 4 atl0dm K AtLat B dom glb K
9 8 adantr K AtLat X B B dom glb K
10 1 4 2 3 5 6 9 p0le K AtLat X B 0 ˙ ˙ X