Step |
Hyp |
Ref |
Expression |
1 |
|
atlatmstc.b |
|
2 |
|
atlatmstc.l |
|
3 |
|
atlatmstc.u |
|
4 |
|
atlatmstc.a |
|
5 |
|
simpl2 |
|
6 |
|
ssrab2 |
|
7 |
1 4
|
atssbase |
|
8 |
|
rabss2 |
|
9 |
7 8
|
ax-mp |
|
10 |
1 2 3
|
lubss |
|
11 |
6 9 10
|
mp3an23 |
|
12 |
5 11
|
syl |
|
13 |
|
atlpos |
|
14 |
13
|
3ad2ant3 |
|
15 |
|
simpl |
|
16 |
|
simpr |
|
17 |
1 2 3 15 16
|
lubid |
|
18 |
14 17
|
sylan |
|
19 |
12 18
|
breqtrd |
|
20 |
|
breq1 |
|
21 |
20
|
elrab |
|
22 |
|
simpll2 |
|
23 |
|
ssrab2 |
|
24 |
23 7
|
sstri |
|
25 |
1 2 3
|
lubel |
|
26 |
24 25
|
mp3an3 |
|
27 |
22 26
|
sylancom |
|
28 |
27
|
ex |
|
29 |
21 28
|
syl5bir |
|
30 |
29
|
expdimp |
|
31 |
|
simpll3 |
|
32 |
|
eqid |
|
33 |
32 4
|
atn0 |
|
34 |
31 33
|
sylancom |
|
35 |
34
|
adantr |
|
36 |
|
simpl3 |
|
37 |
|
atllat |
|
38 |
36 37
|
syl |
|
39 |
38
|
adantr |
|
40 |
1 4
|
atbase |
|
41 |
40
|
adantl |
|
42 |
1 3
|
clatlubcl |
|
43 |
5 24 42
|
sylancl |
|
44 |
43
|
adantr |
|
45 |
|
simpl1 |
|
46 |
|
omlop |
|
47 |
45 46
|
syl |
|
48 |
|
eqid |
|
49 |
1 48
|
opoccl |
|
50 |
47 43 49
|
syl2anc |
|
51 |
50
|
adantr |
|
52 |
|
eqid |
|
53 |
1 2 52
|
latlem12 |
|
54 |
39 41 44 51 53
|
syl13anc |
|
55 |
1 48 52 32
|
opnoncon |
|
56 |
47 43 55
|
syl2anc |
|
57 |
56
|
breq2d |
|
58 |
57
|
adantr |
|
59 |
1 2 32
|
ople0 |
|
60 |
47 40 59
|
syl2an |
|
61 |
54 58 60
|
3bitrd |
|
62 |
61
|
biimpa |
|
63 |
62
|
expr |
|
64 |
63
|
necon3ad |
|
65 |
35 64
|
mpd |
|
66 |
65
|
ex |
|
67 |
30 66
|
syld |
|
68 |
|
imnan |
|
69 |
67 68
|
sylib |
|
70 |
|
simplr |
|
71 |
1 2 52
|
latlem12 |
|
72 |
39 41 70 51 71
|
syl13anc |
|
73 |
69 72
|
mtbid |
|
74 |
73
|
nrexdv |
|
75 |
|
simpll3 |
|
76 |
|
simpr |
|
77 |
1 52
|
latmcl |
|
78 |
38 76 50 77
|
syl3anc |
|
79 |
78
|
adantr |
|
80 |
|
simpr |
|
81 |
1 2 32 4
|
atlex |
|
82 |
75 79 80 81
|
syl3anc |
|
83 |
82
|
ex |
|
84 |
83
|
necon1bd |
|
85 |
74 84
|
mpd |
|
86 |
1 2 52 48 32
|
omllaw3 |
|
87 |
45 43 76 86
|
syl3anc |
|
88 |
19 85 87
|
mp2and |
|