Metamath Proof Explorer


Theorem atlelt

Description: Transfer less-than relation from one atom to another. (Contributed by NM, 7-May-2012)

Ref Expression
Hypotheses atlelt.b B = Base K
atlelt.l ˙ = K
atlelt.s < ˙ = < K
atlelt.a A = Atoms K
Assertion atlelt K HL P A Q A X B P ˙ X Q < ˙ X P < ˙ X

Proof

Step Hyp Ref Expression
1 atlelt.b B = Base K
2 atlelt.l ˙ = K
3 atlelt.s < ˙ = < K
4 atlelt.a A = Atoms K
5 simp3r K HL P A Q A X B P ˙ X Q < ˙ X Q < ˙ X
6 breq1 P = Q P < ˙ X Q < ˙ X
7 5 6 syl5ibrcom K HL P A Q A X B P ˙ X Q < ˙ X P = Q P < ˙ X
8 simp1 K HL P A Q A X B P ˙ X Q < ˙ X K HL
9 simp21 K HL P A Q A X B P ˙ X Q < ˙ X P A
10 simp22 K HL P A Q A X B P ˙ X Q < ˙ X Q A
11 eqid join K = join K
12 3 11 4 atlt K HL P A Q A P < ˙ P join K Q P Q
13 8 9 10 12 syl3anc K HL P A Q A X B P ˙ X Q < ˙ X P < ˙ P join K Q P Q
14 simp3l K HL P A Q A X B P ˙ X Q < ˙ X P ˙ X
15 simp23 K HL P A Q A X B P ˙ X Q < ˙ X X B
16 8 10 15 3jca K HL P A Q A X B P ˙ X Q < ˙ X K HL Q A X B
17 2 3 pltle K HL Q A X B Q < ˙ X Q ˙ X
18 16 5 17 sylc K HL P A Q A X B P ˙ X Q < ˙ X Q ˙ X
19 hllat K HL K Lat
20 19 3ad2ant1 K HL P A Q A X B P ˙ X Q < ˙ X K Lat
21 1 4 atbase P A P B
22 9 21 syl K HL P A Q A X B P ˙ X Q < ˙ X P B
23 1 4 atbase Q A Q B
24 10 23 syl K HL P A Q A X B P ˙ X Q < ˙ X Q B
25 1 2 11 latjle12 K Lat P B Q B X B P ˙ X Q ˙ X P join K Q ˙ X
26 20 22 24 15 25 syl13anc K HL P A Q A X B P ˙ X Q < ˙ X P ˙ X Q ˙ X P join K Q ˙ X
27 14 18 26 mpbi2and K HL P A Q A X B P ˙ X Q < ˙ X P join K Q ˙ X
28 hlpos K HL K Poset
29 28 3ad2ant1 K HL P A Q A X B P ˙ X Q < ˙ X K Poset
30 1 11 latjcl K Lat P B Q B P join K Q B
31 20 22 24 30 syl3anc K HL P A Q A X B P ˙ X Q < ˙ X P join K Q B
32 1 2 3 pltletr K Poset P B P join K Q B X B P < ˙ P join K Q P join K Q ˙ X P < ˙ X
33 29 22 31 15 32 syl13anc K HL P A Q A X B P ˙ X Q < ˙ X P < ˙ P join K Q P join K Q ˙ X P < ˙ X
34 27 33 mpan2d K HL P A Q A X B P ˙ X Q < ˙ X P < ˙ P join K Q P < ˙ X
35 13 34 sylbird K HL P A Q A X B P ˙ X Q < ˙ X P Q P < ˙ X
36 7 35 pm2.61dne K HL P A Q A X B P ˙ X Q < ˙ X P < ˙ X