Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Atomic lattices with covering property
atllat
Next ⟩
atlpos
Metamath Proof Explorer
Ascii
Unicode
Theorem
atllat
Description:
An atomic lattice is a lattice.
(Contributed by
NM
, 21-Oct-2011)
Ref
Expression
Assertion
atllat
⊢
K
∈
AtLat
→
K
∈
Lat
Proof
Step
Hyp
Ref
Expression
1
eqid
⊢
Base
K
=
Base
K
2
eqid
⊢
glb
⁡
K
=
glb
⁡
K
3
eqid
⊢
≤
K
=
≤
K
4
eqid
⊢
0.
⁡
K
=
0.
⁡
K
5
eqid
⊢
Atoms
⁡
K
=
Atoms
⁡
K
6
1
2
3
4
5
isatl
⊢
K
∈
AtLat
↔
K
∈
Lat
∧
Base
K
∈
dom
⁡
glb
⁡
K
∧
∀
x
∈
Base
K
x
≠
0.
⁡
K
→
∃
p
∈
Atoms
⁡
K
p
≤
K
x
7
6
simp1bi
⊢
K
∈
AtLat
→
K
∈
Lat