Metamath Proof Explorer


Theorem atlle0

Description: An element less than or equal to zero equals zero. ( chle0 analog.) (Contributed by NM, 21-Oct-2011)

Ref Expression
Hypotheses atl0le.b B = Base K
atl0le.l ˙ = K
atl0le.z 0 ˙ = 0. K
Assertion atlle0 K AtLat X B X ˙ 0 ˙ X = 0 ˙

Proof

Step Hyp Ref Expression
1 atl0le.b B = Base K
2 atl0le.l ˙ = K
3 atl0le.z 0 ˙ = 0. K
4 1 2 3 atl0le K AtLat X B 0 ˙ ˙ X
5 4 biantrud K AtLat X B X ˙ 0 ˙ X ˙ 0 ˙ 0 ˙ ˙ X
6 atlpos K AtLat K Poset
7 6 adantr K AtLat X B K Poset
8 simpr K AtLat X B X B
9 1 3 atl0cl K AtLat 0 ˙ B
10 9 adantr K AtLat X B 0 ˙ B
11 1 2 posasymb K Poset X B 0 ˙ B X ˙ 0 ˙ 0 ˙ ˙ X X = 0 ˙
12 7 8 10 11 syl3anc K AtLat X B X ˙ 0 ˙ 0 ˙ ˙ X X = 0 ˙
13 5 12 bitrd K AtLat X B X ˙ 0 ˙ X = 0 ˙