Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Atomic lattices with covering property
atlltn0
Next ⟩
isat3
Metamath Proof Explorer
Ascii
Unicode
Theorem
atlltn0
Description:
A lattice element greater than zero is nonzero.
(Contributed by
NM
, 1-Jun-2012)
Ref
Expression
Hypotheses
atlltne0.b
⊢
B
=
Base
K
atlltne0.s
⊢
<
˙
=
<
K
atlltne0.z
⊢
0
˙
=
0.
⁡
K
Assertion
atlltn0
⊢
K
∈
AtLat
∧
X
∈
B
→
0
˙
<
˙
X
↔
X
≠
0
˙
Proof
Step
Hyp
Ref
Expression
1
atlltne0.b
⊢
B
=
Base
K
2
atlltne0.s
⊢
<
˙
=
<
K
3
atlltne0.z
⊢
0
˙
=
0.
⁡
K
4
simpl
⊢
K
∈
AtLat
∧
X
∈
B
→
K
∈
AtLat
5
1
3
atl0cl
⊢
K
∈
AtLat
→
0
˙
∈
B
6
5
adantr
⊢
K
∈
AtLat
∧
X
∈
B
→
0
˙
∈
B
7
simpr
⊢
K
∈
AtLat
∧
X
∈
B
→
X
∈
B
8
eqid
⊢
≤
K
=
≤
K
9
8
2
pltval
⊢
K
∈
AtLat
∧
0
˙
∈
B
∧
X
∈
B
→
0
˙
<
˙
X
↔
0
˙
≤
K
X
∧
0
˙
≠
X
10
4
6
7
9
syl3anc
⊢
K
∈
AtLat
∧
X
∈
B
→
0
˙
<
˙
X
↔
0
˙
≤
K
X
∧
0
˙
≠
X
11
necom
⊢
X
≠
0
˙
↔
0
˙
≠
X
12
1
8
3
atl0le
⊢
K
∈
AtLat
∧
X
∈
B
→
0
˙
≤
K
X
13
12
biantrurd
⊢
K
∈
AtLat
∧
X
∈
B
→
0
˙
≠
X
↔
0
˙
≤
K
X
∧
0
˙
≠
X
14
11
13
bitr2id
⊢
K
∈
AtLat
∧
X
∈
B
→
0
˙
≤
K
X
∧
0
˙
≠
X
↔
X
≠
0
˙
15
10
14
bitrd
⊢
K
∈
AtLat
∧
X
∈
B
→
0
˙
<
˙
X
↔
X
≠
0
˙