Metamath Proof Explorer


Theorem atlltn0

Description: A lattice element greater than zero is nonzero. (Contributed by NM, 1-Jun-2012)

Ref Expression
Hypotheses atlltne0.b B = Base K
atlltne0.s < ˙ = < K
atlltne0.z 0 ˙ = 0. K
Assertion atlltn0 K AtLat X B 0 ˙ < ˙ X X 0 ˙

Proof

Step Hyp Ref Expression
1 atlltne0.b B = Base K
2 atlltne0.s < ˙ = < K
3 atlltne0.z 0 ˙ = 0. K
4 simpl K AtLat X B K AtLat
5 1 3 atl0cl K AtLat 0 ˙ B
6 5 adantr K AtLat X B 0 ˙ B
7 simpr K AtLat X B X B
8 eqid K = K
9 8 2 pltval K AtLat 0 ˙ B X B 0 ˙ < ˙ X 0 ˙ K X 0 ˙ X
10 4 6 7 9 syl3anc K AtLat X B 0 ˙ < ˙ X 0 ˙ K X 0 ˙ X
11 necom X 0 ˙ 0 ˙ X
12 1 8 3 atl0le K AtLat X B 0 ˙ K X
13 12 biantrurd K AtLat X B 0 ˙ X 0 ˙ K X 0 ˙ X
14 11 13 bitr2id K AtLat X B 0 ˙ K X 0 ˙ X X 0 ˙
15 10 14 bitrd K AtLat X B 0 ˙ < ˙ X X 0 ˙