Metamath Proof Explorer


Theorem atltcvr

Description: An equivalence of less-than ordering and covers relation. (Contributed by NM, 7-Feb-2012)

Ref Expression
Hypotheses atltcvr.s < ˙ = < K
atltcvr.j ˙ = join K
atltcvr.a A = Atoms K
atltcvr.c C = K
Assertion atltcvr K HL P A Q A R A P < ˙ Q ˙ R P C Q ˙ R

Proof

Step Hyp Ref Expression
1 atltcvr.s < ˙ = < K
2 atltcvr.j ˙ = join K
3 atltcvr.a A = Atoms K
4 atltcvr.c C = K
5 oveq1 Q = R Q ˙ R = R ˙ R
6 simpr3 K HL P A Q A R A R A
7 2 3 hlatjidm K HL R A R ˙ R = R
8 6 7 syldan K HL P A Q A R A R ˙ R = R
9 5 8 sylan9eqr K HL P A Q A R A Q = R Q ˙ R = R
10 9 breq2d K HL P A Q A R A Q = R P < ˙ Q ˙ R P < ˙ R
11 hlatl K HL K AtLat
12 11 adantr K HL P A Q A R A K AtLat
13 simpr1 K HL P A Q A R A P A
14 1 3 atnlt K AtLat P A R A ¬ P < ˙ R
15 12 13 6 14 syl3anc K HL P A Q A R A ¬ P < ˙ R
16 15 pm2.21d K HL P A Q A R A P < ˙ R P C Q ˙ R
17 16 adantr K HL P A Q A R A Q = R P < ˙ R P C Q ˙ R
18 10 17 sylbid K HL P A Q A R A Q = R P < ˙ Q ˙ R P C Q ˙ R
19 simpl K HL P A Q A R A K HL
20 hllat K HL K Lat
21 20 adantr K HL P A Q A R A K Lat
22 simpr2 K HL P A Q A R A Q A
23 eqid Base K = Base K
24 23 3 atbase Q A Q Base K
25 22 24 syl K HL P A Q A R A Q Base K
26 23 3 atbase R A R Base K
27 6 26 syl K HL P A Q A R A R Base K
28 23 2 latjcl K Lat Q Base K R Base K Q ˙ R Base K
29 21 25 27 28 syl3anc K HL P A Q A R A Q ˙ R Base K
30 eqid K = K
31 30 1 pltle K HL P A Q ˙ R Base K P < ˙ Q ˙ R P K Q ˙ R
32 19 13 29 31 syl3anc K HL P A Q A R A P < ˙ Q ˙ R P K Q ˙ R
33 32 adantr K HL P A Q A R A Q R P < ˙ Q ˙ R P K Q ˙ R
34 simpll K HL P A Q A R A Q R P K Q ˙ R K HL
35 simplr K HL P A Q A R A Q R P K Q ˙ R P A Q A R A
36 simpr K HL P A Q A R A Q R P K Q ˙ R Q R P K Q ˙ R
37 34 35 36 3jca K HL P A Q A R A Q R P K Q ˙ R K HL P A Q A R A Q R P K Q ˙ R
38 37 anassrs K HL P A Q A R A Q R P K Q ˙ R K HL P A Q A R A Q R P K Q ˙ R
39 30 2 4 3 atcvrj2 K HL P A Q A R A Q R P K Q ˙ R P C Q ˙ R
40 38 39 syl K HL P A Q A R A Q R P K Q ˙ R P C Q ˙ R
41 40 ex K HL P A Q A R A Q R P K Q ˙ R P C Q ˙ R
42 33 41 syld K HL P A Q A R A Q R P < ˙ Q ˙ R P C Q ˙ R
43 18 42 pm2.61dane K HL P A Q A R A P < ˙ Q ˙ R P C Q ˙ R
44 23 3 atbase P A P Base K
45 13 44 syl K HL P A Q A R A P Base K
46 23 1 4 cvrlt K HL P Base K Q ˙ R Base K P C Q ˙ R P < ˙ Q ˙ R
47 46 ex K HL P Base K Q ˙ R Base K P C Q ˙ R P < ˙ Q ˙ R
48 19 45 29 47 syl3anc K HL P A Q A R A P C Q ˙ R P < ˙ Q ˙ R
49 43 48 impbid K HL P A Q A R A P < ˙ Q ˙ R P C Q ˙ R