Metamath Proof Explorer


Theorem atmd

Description: Two Hilbert lattice elements have the modular pair property if the first is an atom. Theorem 7.6(b) of MaedaMaeda p. 31. (Contributed by NM, 22-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion atmd A HAtoms B C A 𝑀 B

Proof

Step Hyp Ref Expression
1 atdmd A HAtoms x C A 𝑀 * x
2 1 ralrimiva A HAtoms x C A 𝑀 * x
3 atelch A HAtoms A C
4 mddmd2 A C x C A 𝑀 x x C A 𝑀 * x
5 3 4 syl A HAtoms x C A 𝑀 x x C A 𝑀 * x
6 2 5 mpbird A HAtoms x C A 𝑀 x
7 breq2 x = B A 𝑀 x A 𝑀 B
8 7 rspcv B C x C A 𝑀 x A 𝑀 B
9 6 8 mpan9 A HAtoms B C A 𝑀 B