Metamath Proof Explorer


Theorem atmd2

Description: Two Hilbert lattice elements have the dual modular pair property if the second is an atom. Part of Exercise 6 of Kalmbach p. 103. (Contributed by NM, 22-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion atmd2 A C B HAtoms A 𝑀 B

Proof

Step Hyp Ref Expression
1 cvp A C B HAtoms A B = 0 A A B
2 atelch B HAtoms B C
3 cvexch A C B C A B B A A B
4 cvmd A C B C A B B A 𝑀 B
5 4 3expia A C B C A B B A 𝑀 B
6 3 5 sylbird A C B C A A B A 𝑀 B
7 2 6 sylan2 A C B HAtoms A A B A 𝑀 B
8 1 7 sylbid A C B HAtoms A B = 0 A 𝑀 B
9 atnssm0 A C B HAtoms ¬ B A A B = 0
10 9 con1bid A C B HAtoms ¬ A B = 0 B A
11 ssmd2 B C A C B A A 𝑀 B
12 11 3com12 A C B C B A A 𝑀 B
13 2 12 syl3an2 A C B HAtoms B A A 𝑀 B
14 13 3expia A C B HAtoms B A A 𝑀 B
15 10 14 sylbid A C B HAtoms ¬ A B = 0 A 𝑀 B
16 8 15 pm2.61d A C B HAtoms A 𝑀 B