Metamath Proof Explorer


Theorem atmod1i1

Description: Version of modular law pmod1i that holds in a Hilbert lattice, when one element is an atom. (Contributed by NM, 11-May-2012) (Revised by Mario Carneiro, 10-May-2013)

Ref Expression
Hypotheses atmod.b B = Base K
atmod.l ˙ = K
atmod.j ˙ = join K
atmod.m ˙ = meet K
atmod.a A = Atoms K
Assertion atmod1i1 K HL P A X B Y B P ˙ Y P ˙ X ˙ Y = P ˙ X ˙ Y

Proof

Step Hyp Ref Expression
1 atmod.b B = Base K
2 atmod.l ˙ = K
3 atmod.j ˙ = join K
4 atmod.m ˙ = meet K
5 atmod.a A = Atoms K
6 simpl K HL P A X B Y B K HL
7 simpr2 K HL P A X B Y B X B
8 simpr1 K HL P A X B Y B P A
9 eqid pmap K = pmap K
10 eqid + 𝑃 K = + 𝑃 K
11 1 3 5 9 10 pmapjat2 K HL X B P A pmap K P ˙ X = pmap K P + 𝑃 K pmap K X
12 6 7 8 11 syl3anc K HL P A X B Y B pmap K P ˙ X = pmap K P + 𝑃 K pmap K X
13 1 5 atbase P A P B
14 1 2 3 4 9 10 hlmod1i K HL P B X B Y B P ˙ Y pmap K P ˙ X = pmap K P + 𝑃 K pmap K X P ˙ X ˙ Y = P ˙ X ˙ Y
15 13 14 syl3anr1 K HL P A X B Y B P ˙ Y pmap K P ˙ X = pmap K P + 𝑃 K pmap K X P ˙ X ˙ Y = P ˙ X ˙ Y
16 12 15 mpan2d K HL P A X B Y B P ˙ Y P ˙ X ˙ Y = P ˙ X ˙ Y
17 16 3impia K HL P A X B Y B P ˙ Y P ˙ X ˙ Y = P ˙ X ˙ Y
18 17 eqcomd K HL P A X B Y B P ˙ Y P ˙ X ˙ Y = P ˙ X ˙ Y