Metamath Proof Explorer


Theorem atn0

Description: An atom is not zero. ( atne0 analog.) (Contributed by NM, 5-Nov-2012)

Ref Expression
Hypotheses atne0.z 0 ˙ = 0. K
atne0.a A = Atoms K
Assertion atn0 K AtLat P A P 0 ˙

Proof

Step Hyp Ref Expression
1 atne0.z 0 ˙ = 0. K
2 atne0.a A = Atoms K
3 eqid Base K = Base K
4 eqid K = K
5 3 4 1 2 isat3 K AtLat P A P Base K P 0 ˙ x Base K x K P x = P x = 0 ˙
6 simp2 P Base K P 0 ˙ x Base K x K P x = P x = 0 ˙ P 0 ˙
7 5 6 syl6bi K AtLat P A P 0 ˙
8 7 imp K AtLat P A P 0 ˙