Metamath Proof Explorer


Theorem atnaiana

Description: Given a, it is not the case a implies a self contradiction. (Contributed by Jarvin Udandy, 7-Sep-2020)

Ref Expression
Hypothesis atnaiana.1 φ
Assertion atnaiana ¬ φ φ ¬ φ

Proof

Step Hyp Ref Expression
1 atnaiana.1 φ
2 1 bitru φ
3 pm3.24 ¬ φ ¬ φ
4 3 bifal φ ¬ φ
5 2 4 aifftbifffaibif φ φ ¬ φ
6 5 aisfina ¬ φ φ ¬ φ