Metamath Proof Explorer


Theorem atncmp

Description: Frequently-used variation of atcmp . (Contributed by NM, 29-Jun-2012)

Ref Expression
Hypotheses atcmp.l ˙ = K
atcmp.a A = Atoms K
Assertion atncmp K AtLat P A Q A ¬ P ˙ Q P Q

Proof

Step Hyp Ref Expression
1 atcmp.l ˙ = K
2 atcmp.a A = Atoms K
3 1 2 atcmp K AtLat P A Q A P ˙ Q P = Q
4 3 necon3bbid K AtLat P A Q A ¬ P ˙ Q P Q